dr . XAI:一种基于本体的黑盒顺序数据分类解释方法

Cecilia Panigutti, A. Perotti, D. Pedreschi
{"title":"dr . XAI:一种基于本体的黑盒顺序数据分类解释方法","authors":"Cecilia Panigutti, A. Perotti, D. Pedreschi","doi":"10.1145/3351095.3372855","DOIUrl":null,"url":null,"abstract":"Several recent advancements in Machine Learning involve blackbox models: algorithms that do not provide human-understandable explanations in support of their decisions. This limitation hampers the fairness, accountability and transparency of these models; the field of eXplainable Artificial Intelligence (XAI) tries to solve this problem providing human-understandable explanations for black-box models. However, healthcare datasets (and the related learning tasks) often present peculiar features, such as sequential data, multi-label predictions, and links to structured background knowledge. In this paper, we introduce Doctor XAI, a model-agnostic explainability technique able to deal with multi-labeled, sequential, ontology-linked data. We focus on explaining Doctor AI, a multilabel classifier which takes as input the clinical history of a patient in order to predict the next visit. Furthermore, we show how exploiting the temporal dimension in the data and the domain knowledge encoded in the medical ontology improves the quality of the mined explanations.","PeriodicalId":377829,"journal":{"name":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"Doctor XAI: an ontology-based approach to black-box sequential data classification explanations\",\"authors\":\"Cecilia Panigutti, A. Perotti, D. Pedreschi\",\"doi\":\"10.1145/3351095.3372855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several recent advancements in Machine Learning involve blackbox models: algorithms that do not provide human-understandable explanations in support of their decisions. This limitation hampers the fairness, accountability and transparency of these models; the field of eXplainable Artificial Intelligence (XAI) tries to solve this problem providing human-understandable explanations for black-box models. However, healthcare datasets (and the related learning tasks) often present peculiar features, such as sequential data, multi-label predictions, and links to structured background knowledge. In this paper, we introduce Doctor XAI, a model-agnostic explainability technique able to deal with multi-labeled, sequential, ontology-linked data. We focus on explaining Doctor AI, a multilabel classifier which takes as input the clinical history of a patient in order to predict the next visit. Furthermore, we show how exploiting the temporal dimension in the data and the domain knowledge encoded in the medical ontology improves the quality of the mined explanations.\",\"PeriodicalId\":377829,\"journal\":{\"name\":\"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3351095.3372855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3351095.3372855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

摘要

机器学习的几个最新进展涉及黑箱模型:不提供人类可理解的解释来支持其决策的算法。这种限制阻碍了这些模型的公平性、问责性和透明度;可解释人工智能(XAI)领域试图解决这个问题,为黑盒模型提供人类可以理解的解释。然而,医疗保健数据集(以及相关的学习任务)通常呈现出特殊的特征,例如顺序数据、多标签预测以及与结构化背景知识的链接。在本文中,我们介绍了XAI博士,一种模型不可知的可解释性技术,能够处理多标签、顺序、本体关联的数据。我们专注于解释医生AI,这是一种多标签分类器,它将患者的临床病史作为输入,以预测下一次就诊。此外,我们展示了如何利用数据中的时间维度和医学本体中编码的领域知识来提高挖掘解释的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Doctor XAI: an ontology-based approach to black-box sequential data classification explanations
Several recent advancements in Machine Learning involve blackbox models: algorithms that do not provide human-understandable explanations in support of their decisions. This limitation hampers the fairness, accountability and transparency of these models; the field of eXplainable Artificial Intelligence (XAI) tries to solve this problem providing human-understandable explanations for black-box models. However, healthcare datasets (and the related learning tasks) often present peculiar features, such as sequential data, multi-label predictions, and links to structured background knowledge. In this paper, we introduce Doctor XAI, a model-agnostic explainability technique able to deal with multi-labeled, sequential, ontology-linked data. We focus on explaining Doctor AI, a multilabel classifier which takes as input the clinical history of a patient in order to predict the next visit. Furthermore, we show how exploiting the temporal dimension in the data and the domain knowledge encoded in the medical ontology improves the quality of the mined explanations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信