机械臂系统的故障检测:滑模观测器方法

Tongli Jia, Yunqing Liu, Jiaqi Li
{"title":"机械臂系统的故障检测:滑模观测器方法","authors":"Tongli Jia, Yunqing Liu, Jiaqi Li","doi":"10.1109/ITNEC.2019.8729344","DOIUrl":null,"url":null,"abstract":"This paper considers the fault detection problem about the high-risk operation of the ammunition fuze assembly system, and discusses the fault detection method based on the sliding mode observer. First, a dynamic model of the manipulator is established and its dynamic properties are given. Then, the sliding mode observer equation is proposed, and the RBF neural network is used to approximate the uncertain part, and then the fault detection method is obtained. Finally, the effectiveness of the algorithm is verified by the simulation of the double joint manipulator. The results show that using the sliding mode observer for fault detection can accurately determine the actual fault, accurately estimate the actual state, and ensure the continuous and smooth operation of the system.","PeriodicalId":202966,"journal":{"name":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Detection for Mechanical Arm Systems: An Sliding Mode Observer Approach\",\"authors\":\"Tongli Jia, Yunqing Liu, Jiaqi Li\",\"doi\":\"10.1109/ITNEC.2019.8729344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the fault detection problem about the high-risk operation of the ammunition fuze assembly system, and discusses the fault detection method based on the sliding mode observer. First, a dynamic model of the manipulator is established and its dynamic properties are given. Then, the sliding mode observer equation is proposed, and the RBF neural network is used to approximate the uncertain part, and then the fault detection method is obtained. Finally, the effectiveness of the algorithm is verified by the simulation of the double joint manipulator. The results show that using the sliding mode observer for fault detection can accurately determine the actual fault, accurately estimate the actual state, and ensure the continuous and smooth operation of the system.\",\"PeriodicalId\":202966,\"journal\":{\"name\":\"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNEC.2019.8729344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC.2019.8729344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对弹药引信装配系统高风险工况的故障检测问题,讨论了基于滑模观测器的故障检测方法。首先,建立了机械手的动力学模型,给出了机械手的动力学特性。然后,提出了滑模观测器方程,利用RBF神经网络对不确定部分进行逼近,得到了故障检测方法。最后,通过双关节机械手的仿真验证了该算法的有效性。结果表明,利用滑模观测器进行故障检测,可以准确判断实际故障,准确估计实际状态,保证系统连续平稳运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Detection for Mechanical Arm Systems: An Sliding Mode Observer Approach
This paper considers the fault detection problem about the high-risk operation of the ammunition fuze assembly system, and discusses the fault detection method based on the sliding mode observer. First, a dynamic model of the manipulator is established and its dynamic properties are given. Then, the sliding mode observer equation is proposed, and the RBF neural network is used to approximate the uncertain part, and then the fault detection method is obtained. Finally, the effectiveness of the algorithm is verified by the simulation of the double joint manipulator. The results show that using the sliding mode observer for fault detection can accurately determine the actual fault, accurately estimate the actual state, and ensure the continuous and smooth operation of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信