{"title":"狄利克雷和诺伊曼条件下阴影区的蠕动波","authors":"A. Kirpichnikova, N. Kirpichnikova","doi":"10.1109/DD46733.2019.9016422","DOIUrl":null,"url":null,"abstract":"We construct shadow creeping waves in the problem of a plane wave diffraction by a smooth axially symmetric prolate body of revolution for both Dirichlet and Neumann boundary conditions. Using Fock’s asymptotics as the initial data for the creeping wave amplitude, the theory of residues allows us to present the wave field in the main approximation.","PeriodicalId":319575,"journal":{"name":"2019 Days on Diffraction (DD)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Creeping waves in the shadow region with the Dirichlet and Neumann conditions\",\"authors\":\"A. Kirpichnikova, N. Kirpichnikova\",\"doi\":\"10.1109/DD46733.2019.9016422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct shadow creeping waves in the problem of a plane wave diffraction by a smooth axially symmetric prolate body of revolution for both Dirichlet and Neumann boundary conditions. Using Fock’s asymptotics as the initial data for the creeping wave amplitude, the theory of residues allows us to present the wave field in the main approximation.\",\"PeriodicalId\":319575,\"journal\":{\"name\":\"2019 Days on Diffraction (DD)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Days on Diffraction (DD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD46733.2019.9016422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD46733.2019.9016422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Creeping waves in the shadow region with the Dirichlet and Neumann conditions
We construct shadow creeping waves in the problem of a plane wave diffraction by a smooth axially symmetric prolate body of revolution for both Dirichlet and Neumann boundary conditions. Using Fock’s asymptotics as the initial data for the creeping wave amplitude, the theory of residues allows us to present the wave field in the main approximation.