了解触摸表面设计中的人体工程学限制

Sven Mayer, P. Gad, Katrin Wolf, Paweł W. Woźniak, N. Henze
{"title":"了解触摸表面设计中的人体工程学限制","authors":"Sven Mayer, P. Gad, Katrin Wolf, Paweł W. Woźniak, N. Henze","doi":"10.1145/3098279.3098537","DOIUrl":null,"url":null,"abstract":"While most current interactive surfaces use only the position of the finger on the surface as the input source, previous work suggests using the finger orientation for enriching the input space. Thus, an understanding of the physiological restrictions of the hand is required to build effective interactive techniques that use finger orientation. We conducted a study to derive the ergonomic constraints for using finger orientation as an effective input source. In a controlled experiment, we systematically manipulated finger pitch and yaw while performing a touch action. Participants were asked to rate the feasibility of the touch action. We found that finger pitch and yaw do significantly affect perceived feasibility and 21.1% of the touch actions were perceived as impossible to perform. Our results show that the finger yaw input space can be divided into the comfort and non-comfort zones. We further present design considerations for future interfaces using finger orientation.","PeriodicalId":120153,"journal":{"name":"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Understanding the ergonomic constraints in designing for touch surfaces\",\"authors\":\"Sven Mayer, P. Gad, Katrin Wolf, Paweł W. Woźniak, N. Henze\",\"doi\":\"10.1145/3098279.3098537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While most current interactive surfaces use only the position of the finger on the surface as the input source, previous work suggests using the finger orientation for enriching the input space. Thus, an understanding of the physiological restrictions of the hand is required to build effective interactive techniques that use finger orientation. We conducted a study to derive the ergonomic constraints for using finger orientation as an effective input source. In a controlled experiment, we systematically manipulated finger pitch and yaw while performing a touch action. Participants were asked to rate the feasibility of the touch action. We found that finger pitch and yaw do significantly affect perceived feasibility and 21.1% of the touch actions were perceived as impossible to perform. Our results show that the finger yaw input space can be divided into the comfort and non-comfort zones. We further present design considerations for future interfaces using finger orientation.\",\"PeriodicalId\":120153,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3098279.3098537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3098279.3098537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

虽然目前大多数交互界面仅使用手指在界面上的位置作为输入源,但以前的工作建议使用手指方向来丰富输入空间。因此,需要了解手的生理限制,以建立有效的互动技术,使用手指的方向。我们进行了一项研究,以得出使用手指方向作为有效输入源的人体工程学约束。在一项对照实验中,我们在进行触摸动作时系统地操纵手指的俯仰和偏航。参与者被要求对触摸动作的可行性进行评分。我们发现手指的俯仰和偏航确实显著影响感知的可行性,21.1%的触摸动作被认为是不可能执行的。结果表明,手指偏航输入空间可分为舒适区和非舒适区。我们进一步提出了使用手指方向的未来界面的设计考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the ergonomic constraints in designing for touch surfaces
While most current interactive surfaces use only the position of the finger on the surface as the input source, previous work suggests using the finger orientation for enriching the input space. Thus, an understanding of the physiological restrictions of the hand is required to build effective interactive techniques that use finger orientation. We conducted a study to derive the ergonomic constraints for using finger orientation as an effective input source. In a controlled experiment, we systematically manipulated finger pitch and yaw while performing a touch action. Participants were asked to rate the feasibility of the touch action. We found that finger pitch and yaw do significantly affect perceived feasibility and 21.1% of the touch actions were perceived as impossible to perform. Our results show that the finger yaw input space can be divided into the comfort and non-comfort zones. We further present design considerations for future interfaces using finger orientation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信