利用iSAT验证s型人工神经网络

Dominik Grundt, Sorin Liviu Jurj, Willem Hagemann, P. Kröger, M. Fränzle
{"title":"利用iSAT验证s型人工神经网络","authors":"Dominik Grundt, Sorin Liviu Jurj, Willem Hagemann, P. Kröger, M. Fränzle","doi":"10.4204/EPTCS.361.6","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for verifying the behaviour of nonlinear Artificial Neural Networks (ANNs) found in cyber-physical safety-critical systems. We implement a dedicated interval constraint propagator for the sigmoid function into the SMT solver iSAT and compare this approach with a compositional approach encoding the sigmoid function by basic arithmetic features available in iSAT and an approximating approach. Our experimental results show that the dedicated and the compositional approach clearly outperform the approximating approach. Throughout all our benchmarks, the dedicated approach showed an equal or better performance compared to the compositional approach. This work has received funding from the German Federal Ministry of Economic Affairs and Climate Action (BMWK) through the KI-Wissen project under grant agreement No. 19A20020M, and from the State of Lower Saxony within the framework “Zukunftslabor Mobilit ¨ at Niedersachsen” ( https://www.zdin.de/zukunftslabore/ ).","PeriodicalId":313825,"journal":{"name":"International Workshop on Symbolic-Numeric methods for Reasoning about CPS and IoT","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Verification of Sigmoidal Artificial Neural Networks using iSAT\",\"authors\":\"Dominik Grundt, Sorin Liviu Jurj, Willem Hagemann, P. Kröger, M. Fränzle\",\"doi\":\"10.4204/EPTCS.361.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach for verifying the behaviour of nonlinear Artificial Neural Networks (ANNs) found in cyber-physical safety-critical systems. We implement a dedicated interval constraint propagator for the sigmoid function into the SMT solver iSAT and compare this approach with a compositional approach encoding the sigmoid function by basic arithmetic features available in iSAT and an approximating approach. Our experimental results show that the dedicated and the compositional approach clearly outperform the approximating approach. Throughout all our benchmarks, the dedicated approach showed an equal or better performance compared to the compositional approach. This work has received funding from the German Federal Ministry of Economic Affairs and Climate Action (BMWK) through the KI-Wissen project under grant agreement No. 19A20020M, and from the State of Lower Saxony within the framework “Zukunftslabor Mobilit ¨ at Niedersachsen” ( https://www.zdin.de/zukunftslabore/ ).\",\"PeriodicalId\":313825,\"journal\":{\"name\":\"International Workshop on Symbolic-Numeric methods for Reasoning about CPS and IoT\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Symbolic-Numeric methods for Reasoning about CPS and IoT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.361.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Symbolic-Numeric methods for Reasoning about CPS and IoT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.361.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种验证网络物理安全关键系统中非线性人工神经网络(ann)行为的方法。我们在SMT求解器iSAT中实现了sigmoid函数的专用区间约束传播器,并将该方法与iSAT中可用的基本算术特征编码sigmoid函数的组合方法和近似方法进行了比较。实验结果表明,专用和组合方法明显优于近似方法。在我们所有的基准测试中,与组合方法相比,专用方法显示出相同或更好的性能。这项工作得到了德国联邦经济事务和气候行动部(BMWK)通过KI-Wissen项目(赠款协议号:19A20020M)和下萨克森州在“zukuntslabor Mobilit¨at Niedersachsen”(https://www.zdin.de/zukunftslabore/)框架下的资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verification of Sigmoidal Artificial Neural Networks using iSAT
This paper presents an approach for verifying the behaviour of nonlinear Artificial Neural Networks (ANNs) found in cyber-physical safety-critical systems. We implement a dedicated interval constraint propagator for the sigmoid function into the SMT solver iSAT and compare this approach with a compositional approach encoding the sigmoid function by basic arithmetic features available in iSAT and an approximating approach. Our experimental results show that the dedicated and the compositional approach clearly outperform the approximating approach. Throughout all our benchmarks, the dedicated approach showed an equal or better performance compared to the compositional approach. This work has received funding from the German Federal Ministry of Economic Affairs and Climate Action (BMWK) through the KI-Wissen project under grant agreement No. 19A20020M, and from the State of Lower Saxony within the framework “Zukunftslabor Mobilit ¨ at Niedersachsen” ( https://www.zdin.de/zukunftslabore/ ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信