弱相关下Hill估计量的渐近正态性

Y. Berkoun, K. Boualam
{"title":"弱相关下Hill估计量的渐近正态性","authors":"Y. Berkoun, K. Boualam","doi":"10.5772/intechopen.84555","DOIUrl":null,"url":null,"abstract":"This note is devoted to the asymptotic normality of Hill's estimator when data are weakly dependent in the sense of Doukhan. The primary results on this setting rely on the observations being strong mixing. This assumption is often the key tool for establishing the asymptotic behavior of this estimator. A number of attempts have been made to relax the assumption of stationarity and mixing. Relaxing this condition, and assuming the weak dependence, we extend the results obtained by Rootzen and Starica. This approach requires less restrictive conditions than the previous results.","PeriodicalId":381809,"journal":{"name":"Statistical Methodologies","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Normality of Hill’s Estimator under Weak Dependence\",\"authors\":\"Y. Berkoun, K. Boualam\",\"doi\":\"10.5772/intechopen.84555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note is devoted to the asymptotic normality of Hill's estimator when data are weakly dependent in the sense of Doukhan. The primary results on this setting rely on the observations being strong mixing. This assumption is often the key tool for establishing the asymptotic behavior of this estimator. A number of attempts have been made to relax the assumption of stationarity and mixing. Relaxing this condition, and assuming the weak dependence, we extend the results obtained by Rootzen and Starica. This approach requires less restrictive conditions than the previous results.\",\"PeriodicalId\":381809,\"journal\":{\"name\":\"Statistical Methodologies\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methodologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.84555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.84555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了在Doukhan意义下数据弱相关时Hill估计量的渐近正态性。在这种情况下的主要结果依赖于观测结果的强混合。这个假设通常是建立这个估计量的渐近性的关键工具。已经做了许多尝试来放宽平稳和混合的假设。放宽这一条件,假设弱依赖性,推广Rootzen和Starica的结果。这种方法比以前的结果需要更少的限制条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Normality of Hill’s Estimator under Weak Dependence
This note is devoted to the asymptotic normality of Hill's estimator when data are weakly dependent in the sense of Doukhan. The primary results on this setting rely on the observations being strong mixing. This assumption is often the key tool for establishing the asymptotic behavior of this estimator. A number of attempts have been made to relax the assumption of stationarity and mixing. Relaxing this condition, and assuming the weak dependence, we extend the results obtained by Rootzen and Starica. This approach requires less restrictive conditions than the previous results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信