Mikail Bal, Katy D. Ahmad, Arwa A. Hajjari, Rozina Ali
{"title":"几个精制中性粒细胞环中不完美三胞胎的结构","authors":"Mikail Bal, Katy D. Ahmad, Arwa A. Hajjari, Rozina Ali","doi":"10.54216/jnfs.020103","DOIUrl":null,"url":null,"abstract":"This paper solves the imperfect triplets problem in refined neutrosophic rings, where it presents the necessary and sufficient conditions for a triple (x,y,z) to be an imperfect triplet in any refined neutrosophic ring. Also, this work introduces a full description of the structure of imperfect triplets in numerical refined neutrosophic rings such as refined neutrosophic ring of integers Z(I1,I2) , refined neutrosophic ring of rationales Q(I1,I2), and refined neutrosophic ring or real numbers (R(I1,I2).","PeriodicalId":438286,"journal":{"name":"Journal of Neutrosophic and Fuzzy Systems","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Structure Of Imperfect Triplets In Several Refined Neutrosophic Rings\",\"authors\":\"Mikail Bal, Katy D. Ahmad, Arwa A. Hajjari, Rozina Ali\",\"doi\":\"10.54216/jnfs.020103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper solves the imperfect triplets problem in refined neutrosophic rings, where it presents the necessary and sufficient conditions for a triple (x,y,z) to be an imperfect triplet in any refined neutrosophic ring. Also, this work introduces a full description of the structure of imperfect triplets in numerical refined neutrosophic rings such as refined neutrosophic ring of integers Z(I1,I2) , refined neutrosophic ring of rationales Q(I1,I2), and refined neutrosophic ring or real numbers (R(I1,I2).\",\"PeriodicalId\":438286,\"journal\":{\"name\":\"Journal of Neutrosophic and Fuzzy Systems\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neutrosophic and Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/jnfs.020103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neutrosophic and Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jnfs.020103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Structure Of Imperfect Triplets In Several Refined Neutrosophic Rings
This paper solves the imperfect triplets problem in refined neutrosophic rings, where it presents the necessary and sufficient conditions for a triple (x,y,z) to be an imperfect triplet in any refined neutrosophic ring. Also, this work introduces a full description of the structure of imperfect triplets in numerical refined neutrosophic rings such as refined neutrosophic ring of integers Z(I1,I2) , refined neutrosophic ring of rationales Q(I1,I2), and refined neutrosophic ring or real numbers (R(I1,I2).