几个精制中性粒细胞环中不完美三胞胎的结构

Mikail Bal, Katy D. Ahmad, Arwa A. Hajjari, Rozina Ali
{"title":"几个精制中性粒细胞环中不完美三胞胎的结构","authors":"Mikail Bal, Katy D. Ahmad, Arwa A. Hajjari, Rozina Ali","doi":"10.54216/jnfs.020103","DOIUrl":null,"url":null,"abstract":"This paper solves the imperfect triplets problem in refined neutrosophic rings, where it presents the necessary and sufficient conditions for a triple (x,y,z) to be an imperfect triplet in any refined neutrosophic ring. Also, this work introduces a full description of the structure of imperfect triplets in numerical refined neutrosophic rings such as refined neutrosophic ring of integers Z(I1,I2) , refined neutrosophic ring of rationales Q(I1,I2), and refined neutrosophic ring or real numbers (R(I1,I2).","PeriodicalId":438286,"journal":{"name":"Journal of Neutrosophic and Fuzzy Systems","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Structure Of Imperfect Triplets In Several Refined Neutrosophic Rings\",\"authors\":\"Mikail Bal, Katy D. Ahmad, Arwa A. Hajjari, Rozina Ali\",\"doi\":\"10.54216/jnfs.020103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper solves the imperfect triplets problem in refined neutrosophic rings, where it presents the necessary and sufficient conditions for a triple (x,y,z) to be an imperfect triplet in any refined neutrosophic ring. Also, this work introduces a full description of the structure of imperfect triplets in numerical refined neutrosophic rings such as refined neutrosophic ring of integers Z(I1,I2) , refined neutrosophic ring of rationales Q(I1,I2), and refined neutrosophic ring or real numbers (R(I1,I2).\",\"PeriodicalId\":438286,\"journal\":{\"name\":\"Journal of Neutrosophic and Fuzzy Systems\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neutrosophic and Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/jnfs.020103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neutrosophic and Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jnfs.020103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文解决了精嗜中性环中的不完全三重体问题,给出了在任何精嗜中性环中,一个三重体(x,y,z)是不完全三重体的充分必要条件。此外,本文还全面描述了数值精制中性粒细胞环中的不完全三联体的结构,如整数精制中性粒细胞环Z(I1,I2)、有理基精制中性粒细胞环Q(I1,I2)和实数精制中性粒细胞环R(I1,I2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Structure Of Imperfect Triplets In Several Refined Neutrosophic Rings
This paper solves the imperfect triplets problem in refined neutrosophic rings, where it presents the necessary and sufficient conditions for a triple (x,y,z) to be an imperfect triplet in any refined neutrosophic ring. Also, this work introduces a full description of the structure of imperfect triplets in numerical refined neutrosophic rings such as refined neutrosophic ring of integers Z(I1,I2) , refined neutrosophic ring of rationales Q(I1,I2), and refined neutrosophic ring or real numbers (R(I1,I2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信