基于迁移学习的深度学习模型的医学图像对比分析

Debasis Prasad Sahoo, M. Rout, P. Mallick, Sasmita Rani Samanta
{"title":"基于迁移学习的深度学习模型的医学图像对比分析","authors":"Debasis Prasad Sahoo, M. Rout, P. Mallick, Sasmita Rani Samanta","doi":"10.1109/ASSIC55218.2022.10088373","DOIUrl":null,"url":null,"abstract":"Deep learning is becoming more popular in practically every industry, but especially in medical imaging for better diagnostics of various deadly diseases. Deep learning is used to explain difficulties based on medical image processing as part of machine learning artificial intelligence. Most commonly used machine learning algorithm named Convolutional Neural Network (CNN) grasps a resilient position for image recognition tasks. In this paper, we compared the performance of basic CNN and three state of the art transfer-learning models namely, VGG-16, ResNet50 and GoogleNet (Inception-v3) by extracting features from pre-trained CNN architecture. Small datasets of three fatal diseases, which are brain tumor, breast cancer and skin cancer are used. The determination of this study is to discover the finest trade-off between accuracy.","PeriodicalId":441406,"journal":{"name":"2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Medical Images using Transfer Learning Based Deep Learning Models\",\"authors\":\"Debasis Prasad Sahoo, M. Rout, P. Mallick, Sasmita Rani Samanta\",\"doi\":\"10.1109/ASSIC55218.2022.10088373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is becoming more popular in practically every industry, but especially in medical imaging for better diagnostics of various deadly diseases. Deep learning is used to explain difficulties based on medical image processing as part of machine learning artificial intelligence. Most commonly used machine learning algorithm named Convolutional Neural Network (CNN) grasps a resilient position for image recognition tasks. In this paper, we compared the performance of basic CNN and three state of the art transfer-learning models namely, VGG-16, ResNet50 and GoogleNet (Inception-v3) by extracting features from pre-trained CNN architecture. Small datasets of three fatal diseases, which are brain tumor, breast cancer and skin cancer are used. The determination of this study is to discover the finest trade-off between accuracy.\",\"PeriodicalId\":441406,\"journal\":{\"name\":\"2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSIC55218.2022.10088373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSIC55218.2022.10088373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习在几乎每个行业都越来越受欢迎,尤其是在医学成像领域,它可以更好地诊断各种致命疾病。作为机器学习人工智能的一部分,深度学习用于解释基于医学图像处理的困难。最常用的机器学习算法卷积神经网络(CNN)在图像识别任务中占据了弹性地位。在本文中,我们通过从预训练的CNN架构中提取特征,比较了基本CNN和三种最先进的迁移学习模型(VGG-16, ResNet50和GoogleNet (Inception-v3))的性能。研究使用了三种致命疾病的小数据集,分别是脑肿瘤、乳腺癌和皮肤癌。本研究的目的是发现准确性之间的最佳权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of Medical Images using Transfer Learning Based Deep Learning Models
Deep learning is becoming more popular in practically every industry, but especially in medical imaging for better diagnostics of various deadly diseases. Deep learning is used to explain difficulties based on medical image processing as part of machine learning artificial intelligence. Most commonly used machine learning algorithm named Convolutional Neural Network (CNN) grasps a resilient position for image recognition tasks. In this paper, we compared the performance of basic CNN and three state of the art transfer-learning models namely, VGG-16, ResNet50 and GoogleNet (Inception-v3) by extracting features from pre-trained CNN architecture. Small datasets of three fatal diseases, which are brain tumor, breast cancer and skin cancer are used. The determination of this study is to discover the finest trade-off between accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信