{"title":"一类由Carlson-Shaffer算子定义的解析函数的Fekete-Szegö问题","authors":"O. Ahuja, H. Orhan","doi":"10.2478/UMCSMATH-2014-0001","DOIUrl":null,"url":null,"abstract":"In the present investigation we solve Fekete-Szego problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions. In the present investigation we solve Fekete-Szego problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions.","PeriodicalId":340819,"journal":{"name":"Annales Umcs, Mathematica","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator\",\"authors\":\"O. Ahuja, H. Orhan\",\"doi\":\"10.2478/UMCSMATH-2014-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present investigation we solve Fekete-Szego problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions. In the present investigation we solve Fekete-Szego problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions.\",\"PeriodicalId\":340819,\"journal\":{\"name\":\"Annales Umcs, Mathematica\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Umcs, Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/UMCSMATH-2014-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Umcs, Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/UMCSMATH-2014-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator
In the present investigation we solve Fekete-Szego problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions. In the present investigation we solve Fekete-Szego problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions.