基于Folksonomy的大规模推荐系统并行用户分析:层叠MapReduce的实现

Huizhi Liang, Jim Hogan, Yue Xu
{"title":"基于Folksonomy的大规模推荐系统并行用户分析:层叠MapReduce的实现","authors":"Huizhi Liang, Jim Hogan, Yue Xu","doi":"10.1109/ICDMW.2010.161","DOIUrl":null,"url":null,"abstract":"The Large scaled emerging user created information in web 2.0 such as tags, reviews, comments and blogs can be used to profile users¡¯ interests and preferences to make personalized recommendations. To solve the scalability problem of the current user profiling and recommender systems, this paper proposes a parallel user profiling approach and a scalable recommender system. The current advanced cloud computing techniques including Hadoop, MapReduce and Cascading are employed to implement the proposed approaches. The experiments were conducted on Amazon EC2 Elastic MapReduce and S3 with a real world large scaled dataset from Delicious website.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Parallel User Profiling Based on Folksonomy for Large Scaled Recommender Systems: An Implimentation of Cascading MapReduce\",\"authors\":\"Huizhi Liang, Jim Hogan, Yue Xu\",\"doi\":\"10.1109/ICDMW.2010.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Large scaled emerging user created information in web 2.0 such as tags, reviews, comments and blogs can be used to profile users¡¯ interests and preferences to make personalized recommendations. To solve the scalability problem of the current user profiling and recommender systems, this paper proposes a parallel user profiling approach and a scalable recommender system. The current advanced cloud computing techniques including Hadoop, MapReduce and Cascading are employed to implement the proposed approaches. The experiments were conducted on Amazon EC2 Elastic MapReduce and S3 with a real world large scaled dataset from Delicious website.\",\"PeriodicalId\":170201,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining Workshops\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2010.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

大量新兴用户在web2.0中创建的信息,如标签、评论、评论和博客,可以用来分析用户的兴趣和偏好,从而做出个性化的推荐。为了解决当前用户分析和推荐系统的可扩展性问题,本文提出了一种并行用户分析方法和可扩展的推荐系统。采用当前先进的云计算技术,包括Hadoop、MapReduce和Cascading来实现所提出的方法。实验在Amazon EC2 Elastic MapReduce和S3上进行,并使用了Delicious网站的真实大规模数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel User Profiling Based on Folksonomy for Large Scaled Recommender Systems: An Implimentation of Cascading MapReduce
The Large scaled emerging user created information in web 2.0 such as tags, reviews, comments and blogs can be used to profile users¡¯ interests and preferences to make personalized recommendations. To solve the scalability problem of the current user profiling and recommender systems, this paper proposes a parallel user profiling approach and a scalable recommender system. The current advanced cloud computing techniques including Hadoop, MapReduce and Cascading are employed to implement the proposed approaches. The experiments were conducted on Amazon EC2 Elastic MapReduce and S3 with a real world large scaled dataset from Delicious website.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信