不相交路径分配的通知复杂度

Ivana Kováčová
{"title":"不相交路径分配的通知复杂度","authors":"Ivana Kováčová","doi":"10.1051/ITA/2016020","DOIUrl":null,"url":null,"abstract":"This paper contributes to the research of advice complexity of online problems. Namely, we discuss the disjoint path allocation problem in various versions, based on the choice of values of the calls, and ability to preempt. The advice complexity is measured relative to either the length of the input sequence of requests, or the length of the input path. We provide lower and upper bounds on advice complexity of optimal online algorithms for these problems, and some bounds on trade-off between competitiveness and advice complexity. One of the results is an improved lower bound of n − 1 on advice complexity for the non-preemptive version with constant values of calls. For all considered variations, the newly provided lower and upper bounds on advice complexity of optimal algorithms are linear, and therefore asymptotically tight.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advice complexity of disjoint path allocation\",\"authors\":\"Ivana Kováčová\",\"doi\":\"10.1051/ITA/2016020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper contributes to the research of advice complexity of online problems. Namely, we discuss the disjoint path allocation problem in various versions, based on the choice of values of the calls, and ability to preempt. The advice complexity is measured relative to either the length of the input sequence of requests, or the length of the input path. We provide lower and upper bounds on advice complexity of optimal online algorithms for these problems, and some bounds on trade-off between competitiveness and advice complexity. One of the results is an improved lower bound of n − 1 on advice complexity for the non-preemptive version with constant values of calls. For all considered variations, the newly provided lower and upper bounds on advice complexity of optimal algorithms are linear, and therefore asymptotically tight.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ITA/2016020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ITA/2016020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对在线问题建议复杂性的研究有所贡献。也就是说,我们根据调用值的选择和抢占能力,讨论了不同版本中的不相交路径分配问题。通知复杂性是相对于请求输入序列的长度或输入路径的长度来衡量的。我们给出了这些问题的最优在线算法的建议复杂度的下界和上界,以及竞争性和建议复杂度之间的权衡界限。其中一个结果是改进了具有常量调用值的非抢占版本的通知复杂性的下界n−1。对于所有考虑的变量,新提供的最优算法通知复杂度的下界和上界是线性的,因此是渐近紧密的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advice complexity of disjoint path allocation
This paper contributes to the research of advice complexity of online problems. Namely, we discuss the disjoint path allocation problem in various versions, based on the choice of values of the calls, and ability to preempt. The advice complexity is measured relative to either the length of the input sequence of requests, or the length of the input path. We provide lower and upper bounds on advice complexity of optimal online algorithms for these problems, and some bounds on trade-off between competitiveness and advice complexity. One of the results is an improved lower bound of n − 1 on advice complexity for the non-preemptive version with constant values of calls. For all considered variations, the newly provided lower and upper bounds on advice complexity of optimal algorithms are linear, and therefore asymptotically tight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信