多层神经网络输出表示方案的比较研究

Bao-Liang Lu, K. Ito
{"title":"多层神经网络输出表示方案的比较研究","authors":"Bao-Liang Lu, K. Ito","doi":"10.1109/SICE.1995.526962","DOIUrl":null,"url":null,"abstract":"In this paper, we compare the 1-out-of-N representation scheme with three distributed ones, namely binary, Gray, and simple-sum. We put the emphasis on the training time, learning accuracy, and generalization capability. In order to evaluate the performance of these schemes, three multilayer neural networks (multilayer perceptron, multilayer quadratic perceptron, and multi-sieving network) are used to learn the vowel recognition and image segmentation problems.","PeriodicalId":344374,"journal":{"name":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of output representation schemes for multilayer neural networks\",\"authors\":\"Bao-Liang Lu, K. Ito\",\"doi\":\"10.1109/SICE.1995.526962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we compare the 1-out-of-N representation scheme with three distributed ones, namely binary, Gray, and simple-sum. We put the emphasis on the training time, learning accuracy, and generalization capability. In order to evaluate the performance of these schemes, three multilayer neural networks (multilayer perceptron, multilayer quadratic perceptron, and multi-sieving network) are used to learn the vowel recognition and image segmentation problems.\",\"PeriodicalId\":344374,\"journal\":{\"name\":\"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.1995.526962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.1995.526962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将1 of- n表示方案与三种分布式表示方案进行了比较,即二进制、灰色和简单和。我们将重点放在训练时间、学习精度和泛化能力上。为了评估这些方案的性能,使用多层感知器、多层二次感知器和多层筛分网络三种多层神经网络来学习元音识别和图像分割问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of output representation schemes for multilayer neural networks
In this paper, we compare the 1-out-of-N representation scheme with three distributed ones, namely binary, Gray, and simple-sum. We put the emphasis on the training time, learning accuracy, and generalization capability. In order to evaluate the performance of these schemes, three multilayer neural networks (multilayer perceptron, multilayer quadratic perceptron, and multi-sieving network) are used to learn the vowel recognition and image segmentation problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信