股票推荐和交易协助

Archana Purwar, Indu Chawla, Sarthak Jain, Rahul Malhotra, Dhanesh Chaudhary
{"title":"股票推荐和交易协助","authors":"Archana Purwar, Indu Chawla, Sarthak Jain, Rahul Malhotra, Dhanesh Chaudhary","doi":"10.4018/ijitpm.313423","DOIUrl":null,"url":null,"abstract":"Investing in the stock market has never been an easy task. This paper develops a stock recommendation and trade assistance that uses the past performance of the stock to predict its future performance using linear regression model. Linear regression model has given an accuracy of 99.8% as compared to support vector machine (SVM) which resulted into an accuracy of 94.6%. Data set used under the study was extracted from the historic stock data of reliance industries limited (RIL). To analyze whether to buy or sell the stock, four financial algorithms, namely Bollinger bands, moving average convergence/divergence indicator (MACD), money flow index (MFI), and relative strength index (RSI) are employed to find the composite result. Moreover, sentiment analysis of the news depending upon the earning calls and the annual general meetings is done to provide an overall stock and market sentiment analysis. In-depth balance sheet analysis of the company is also done using various instruments to make the trade assistance more accurate. The values for WACC, D/E ratio, and NPV obtained are 14.99, 0.76, and 8.9 lakh crores for RIL.","PeriodicalId":375999,"journal":{"name":"Int. J. Inf. Technol. Proj. Manag.","volume":"1312 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stock Recommendation and Trade Assistance\",\"authors\":\"Archana Purwar, Indu Chawla, Sarthak Jain, Rahul Malhotra, Dhanesh Chaudhary\",\"doi\":\"10.4018/ijitpm.313423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investing in the stock market has never been an easy task. This paper develops a stock recommendation and trade assistance that uses the past performance of the stock to predict its future performance using linear regression model. Linear regression model has given an accuracy of 99.8% as compared to support vector machine (SVM) which resulted into an accuracy of 94.6%. Data set used under the study was extracted from the historic stock data of reliance industries limited (RIL). To analyze whether to buy or sell the stock, four financial algorithms, namely Bollinger bands, moving average convergence/divergence indicator (MACD), money flow index (MFI), and relative strength index (RSI) are employed to find the composite result. Moreover, sentiment analysis of the news depending upon the earning calls and the annual general meetings is done to provide an overall stock and market sentiment analysis. In-depth balance sheet analysis of the company is also done using various instruments to make the trade assistance more accurate. The values for WACC, D/E ratio, and NPV obtained are 14.99, 0.76, and 8.9 lakh crores for RIL.\",\"PeriodicalId\":375999,\"journal\":{\"name\":\"Int. J. Inf. Technol. Proj. Manag.\",\"volume\":\"1312 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Proj. Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitpm.313423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Proj. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitpm.313423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

投资股市从来都不是一件容易的事。本文提出了一种股票推荐与交易辅助方法,即利用股票的过去表现,利用线性回归模型预测其未来表现。与支持向量机(SVM)相比,线性回归模型的准确率为99.8%,而支持向量机(SVM)的准确率为94.6%。本研究使用的数据集取自信实工业有限公司(reliance industries limited, RIL)的历史股票数据。为了分析该股票是买入还是卖出,我们使用了布林带、移动平均收敛/背离指标(MACD)、资金流指数(MFI)和相对强弱指数(RSI)四种金融算法来得出综合结果。此外,根据财报电话会议和年度股东大会对新闻进行情绪分析,以提供整体股票和市场情绪分析。我们还利用各种工具对公司的资产负债表进行了深入分析,以使贸易援助更加准确。获得的WACC、D/E比率和净现值分别为14.99、0.76和8.9万亿卢比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stock Recommendation and Trade Assistance
Investing in the stock market has never been an easy task. This paper develops a stock recommendation and trade assistance that uses the past performance of the stock to predict its future performance using linear regression model. Linear regression model has given an accuracy of 99.8% as compared to support vector machine (SVM) which resulted into an accuracy of 94.6%. Data set used under the study was extracted from the historic stock data of reliance industries limited (RIL). To analyze whether to buy or sell the stock, four financial algorithms, namely Bollinger bands, moving average convergence/divergence indicator (MACD), money flow index (MFI), and relative strength index (RSI) are employed to find the composite result. Moreover, sentiment analysis of the news depending upon the earning calls and the annual general meetings is done to provide an overall stock and market sentiment analysis. In-depth balance sheet analysis of the company is also done using various instruments to make the trade assistance more accurate. The values for WACC, D/E ratio, and NPV obtained are 14.99, 0.76, and 8.9 lakh crores for RIL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信