基于深度哈希方法的视频数据分层检索

Yucong Suo, Chen Zhang, Xiaoyu Xi, Xinyi Wang, Zhiqiang Zou
{"title":"基于深度哈希方法的视频数据分层检索","authors":"Yucong Suo, Chen Zhang, Xiaoyu Xi, Xinyi Wang, Zhiqiang Zou","doi":"10.1109/ICCSN.2019.8905258","DOIUrl":null,"url":null,"abstract":"Video retrieval technology faces a series of challenges with the tremendous growth in the number of videos. In order to improve the retrieval performance in efficiency and accuracy, a novel deep hash method for video data hierarchical retrieval is proposed in this paper. The approach first uses cluster-based method to extract key frames, which reduces the workload of subsequent work. On the basis of this, high-level semantical features are extracted from VGG16, a widely used deep convolutional neural network (deep CNN) model. Then we utilize a hierarchical retrieval strategy to improve the retrieval performance, roughly can be categorized as coarse search and fine search. In coarse search, we modify simHash to learn hash codes for faster speed, and in fine search, we use the Euclidean distance to achieve higher accuracy. Finally, we compare our approach with other two methods through practical experiments on two videos, and the results demonstrate that our approach has better retrieval effect.","PeriodicalId":330766,"journal":{"name":"2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Video Data Hierarchical Retrieval via Deep Hash Method\",\"authors\":\"Yucong Suo, Chen Zhang, Xiaoyu Xi, Xinyi Wang, Zhiqiang Zou\",\"doi\":\"10.1109/ICCSN.2019.8905258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video retrieval technology faces a series of challenges with the tremendous growth in the number of videos. In order to improve the retrieval performance in efficiency and accuracy, a novel deep hash method for video data hierarchical retrieval is proposed in this paper. The approach first uses cluster-based method to extract key frames, which reduces the workload of subsequent work. On the basis of this, high-level semantical features are extracted from VGG16, a widely used deep convolutional neural network (deep CNN) model. Then we utilize a hierarchical retrieval strategy to improve the retrieval performance, roughly can be categorized as coarse search and fine search. In coarse search, we modify simHash to learn hash codes for faster speed, and in fine search, we use the Euclidean distance to achieve higher accuracy. Finally, we compare our approach with other two methods through practical experiments on two videos, and the results demonstrate that our approach has better retrieval effect.\",\"PeriodicalId\":330766,\"journal\":{\"name\":\"2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSN.2019.8905258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSN.2019.8905258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着视频数量的急剧增长,视频检索技术面临着一系列的挑战。为了提高检索效率和准确性,提出了一种新的视频数据层次检索的深度哈希方法。该方法首先采用基于聚类的方法提取关键帧,减少了后续工作的工作量。在此基础上,从广泛使用的深度卷积神经网络(deep CNN)模型VGG16中提取高级语义特征。然后我们利用层次检索策略来提高检索性能,大致可以分为粗搜索和精搜索。在粗搜索中,我们修改simHash来学习哈希码,以获得更快的速度;在细搜索中,我们使用欧几里得距离来获得更高的精度。最后,通过对两个视频的实际实验,将我们的方法与其他两种方法进行了比较,结果表明我们的方法具有更好的检索效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Data Hierarchical Retrieval via Deep Hash Method
Video retrieval technology faces a series of challenges with the tremendous growth in the number of videos. In order to improve the retrieval performance in efficiency and accuracy, a novel deep hash method for video data hierarchical retrieval is proposed in this paper. The approach first uses cluster-based method to extract key frames, which reduces the workload of subsequent work. On the basis of this, high-level semantical features are extracted from VGG16, a widely used deep convolutional neural network (deep CNN) model. Then we utilize a hierarchical retrieval strategy to improve the retrieval performance, roughly can be categorized as coarse search and fine search. In coarse search, we modify simHash to learn hash codes for faster speed, and in fine search, we use the Euclidean distance to achieve higher accuracy. Finally, we compare our approach with other two methods through practical experiments on two videos, and the results demonstrate that our approach has better retrieval effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信