{"title":"多项式优化问题的图论算法","authors":"S. Sojoudi, Ramtin Madani, G. Fazelnia, J. Lavaei","doi":"10.1109/CDC.2014.7039733","DOIUrl":null,"url":null,"abstract":"The objective of this tutorial paper is to study a general polynomial optimization problem using a semidefinite programming (SDP) relaxation. The first goal is to show how the underlying structure and sparsity of an optimization problem affect its computational complexity. Graph-theoretic algorithms are presented to address this problem based on the notions of low-rank optimization and matrix completion. By building on this result, it is then shown that every polynomial optimization problem admits a sparse representation whose SDP relaxation has a rank 1 or 2 solution. The implications of these results are discussed in details and their applications in decentralized control and power systems are also studied.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Graph-theoretic algorithms for polynomial optimization problems\",\"authors\":\"S. Sojoudi, Ramtin Madani, G. Fazelnia, J. Lavaei\",\"doi\":\"10.1109/CDC.2014.7039733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this tutorial paper is to study a general polynomial optimization problem using a semidefinite programming (SDP) relaxation. The first goal is to show how the underlying structure and sparsity of an optimization problem affect its computational complexity. Graph-theoretic algorithms are presented to address this problem based on the notions of low-rank optimization and matrix completion. By building on this result, it is then shown that every polynomial optimization problem admits a sparse representation whose SDP relaxation has a rank 1 or 2 solution. The implications of these results are discussed in details and their applications in decentralized control and power systems are also studied.\",\"PeriodicalId\":202708,\"journal\":{\"name\":\"53rd IEEE Conference on Decision and Control\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"53rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2014.7039733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7039733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph-theoretic algorithms for polynomial optimization problems
The objective of this tutorial paper is to study a general polynomial optimization problem using a semidefinite programming (SDP) relaxation. The first goal is to show how the underlying structure and sparsity of an optimization problem affect its computational complexity. Graph-theoretic algorithms are presented to address this problem based on the notions of low-rank optimization and matrix completion. By building on this result, it is then shown that every polynomial optimization problem admits a sparse representation whose SDP relaxation has a rank 1 or 2 solution. The implications of these results are discussed in details and their applications in decentralized control and power systems are also studied.