具有“大”非高斯噪声的静态团队的近似最优线性策略

Ankur A. Kulkarni
{"title":"具有“大”非高斯噪声的静态团队的近似最优线性策略","authors":"Ankur A. Kulkarni","doi":"10.1109/CDC.2015.7403351","DOIUrl":null,"url":null,"abstract":"We study stochastic team problems with static information structure where we assume controllers have linear information and quadratic cost but allow the noise to be from a non-Gaussian class. When the noise is Gaussian, it is well known that these problems admit a linear optimal controller. We show that if the noise has a log-concave density, then for `most' problems of this kind, linear strategies are approximately optimal. The quality of the approximation improves as length of the noise vector grows. We show that if the optimal strategies for problems with log-concave noise converge pointwise, they converge to the (linear) optimal strategy for the problem with Gaussian noise. And we derive an error bound on the difference between the optimal cost for the non-Gaussian problem and the best cost obtained under linear strategies.","PeriodicalId":308101,"journal":{"name":"2015 54th IEEE Conference on Decision and Control (CDC)","volume":"104 15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Approximately optimal linear strategies for static teams with ‘big’ non-Gaussian noise\",\"authors\":\"Ankur A. Kulkarni\",\"doi\":\"10.1109/CDC.2015.7403351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study stochastic team problems with static information structure where we assume controllers have linear information and quadratic cost but allow the noise to be from a non-Gaussian class. When the noise is Gaussian, it is well known that these problems admit a linear optimal controller. We show that if the noise has a log-concave density, then for `most' problems of this kind, linear strategies are approximately optimal. The quality of the approximation improves as length of the noise vector grows. We show that if the optimal strategies for problems with log-concave noise converge pointwise, they converge to the (linear) optimal strategy for the problem with Gaussian noise. And we derive an error bound on the difference between the optimal cost for the non-Gaussian problem and the best cost obtained under linear strategies.\",\"PeriodicalId\":308101,\"journal\":{\"name\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"volume\":\"104 15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2015.7403351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 54th IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2015.7403351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们研究具有静态信息结构的随机团队问题,其中我们假设控制器具有线性信息和二次代价,但允许噪声来自非高斯类。当噪声是高斯噪声时,众所周知,这些问题需要一个线性最优控制器。我们表明,如果噪声具有对数凹密度,那么对于这类“大多数”问题,线性策略是近似最优的。随着噪声向量长度的增加,近似的质量得到提高。我们证明了如果对数凹噪声问题的最优策略点向收敛,那么它们收敛于高斯噪声问题的(线性)最优策略。并推导了非高斯问题的最优代价与线性策略下的最优代价之差的误差界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximately optimal linear strategies for static teams with ‘big’ non-Gaussian noise
We study stochastic team problems with static information structure where we assume controllers have linear information and quadratic cost but allow the noise to be from a non-Gaussian class. When the noise is Gaussian, it is well known that these problems admit a linear optimal controller. We show that if the noise has a log-concave density, then for `most' problems of this kind, linear strategies are approximately optimal. The quality of the approximation improves as length of the noise vector grows. We show that if the optimal strategies for problems with log-concave noise converge pointwise, they converge to the (linear) optimal strategy for the problem with Gaussian noise. And we derive an error bound on the difference between the optimal cost for the non-Gaussian problem and the best cost obtained under linear strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信