syroca人工智能网络自动化平台

Alessio Diamanti, José Manuel Sánchez-Vílchez, Stefano Secci
{"title":"syroca人工智能网络自动化平台","authors":"Alessio Diamanti, José Manuel Sánchez-Vílchez, Stefano Secci","doi":"10.1109/ICIN51074.2021.9385535","DOIUrl":null,"url":null,"abstract":"This paper synthetically presents the SYRROCA (SYstem Radiography and ROot Cause Analysis) network automation framework at the state of the art, and details its experimental platform sufficiently enough to understand its technical demonstration. The framework aims to learn nominal operating conditions of a softwarized network service and characterize anomalies in real-time, while offering a compact system state representation called radiography. This representation can provide to operational teams with a real-time insight on anomalies at physical and virtualized layers. The related technical demonstration showcases how SYRROCA can detect real-time anomalies of different nature on a containerized vIMS (virtual IP Multimedia Subsystem) service managed by Kubernetes.","PeriodicalId":347933,"journal":{"name":"2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The SYRROCA AI-empowered network automation platform\",\"authors\":\"Alessio Diamanti, José Manuel Sánchez-Vílchez, Stefano Secci\",\"doi\":\"10.1109/ICIN51074.2021.9385535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper synthetically presents the SYRROCA (SYstem Radiography and ROot Cause Analysis) network automation framework at the state of the art, and details its experimental platform sufficiently enough to understand its technical demonstration. The framework aims to learn nominal operating conditions of a softwarized network service and characterize anomalies in real-time, while offering a compact system state representation called radiography. This representation can provide to operational teams with a real-time insight on anomalies at physical and virtualized layers. The related technical demonstration showcases how SYRROCA can detect real-time anomalies of different nature on a containerized vIMS (virtual IP Multimedia Subsystem) service managed by Kubernetes.\",\"PeriodicalId\":347933,\"journal\":{\"name\":\"2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIN51074.2021.9385535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIN51074.2021.9385535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文综合介绍了目前最先进的syroca(系统放射成像和根本原因分析)网络自动化框架,并详细介绍了其实验平台,以充分了解其技术演示。该框架旨在学习软件网络服务的名义运行条件,并实时表征异常,同时提供一种称为放射照相的紧凑系统状态表示。这种表示可以为运营团队提供对物理层和虚拟化层异常的实时洞察。相关的技术演示展示了syroca如何在Kubernetes管理的容器化vIMS(虚拟IP多媒体子系统)服务上检测不同性质的实时异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The SYRROCA AI-empowered network automation platform
This paper synthetically presents the SYRROCA (SYstem Radiography and ROot Cause Analysis) network automation framework at the state of the art, and details its experimental platform sufficiently enough to understand its technical demonstration. The framework aims to learn nominal operating conditions of a softwarized network service and characterize anomalies in real-time, while offering a compact system state representation called radiography. This representation can provide to operational teams with a real-time insight on anomalies at physical and virtualized layers. The related technical demonstration showcases how SYRROCA can detect real-time anomalies of different nature on a containerized vIMS (virtual IP Multimedia Subsystem) service managed by Kubernetes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信