EmoSens:基于LightGBM传感器数据分析的情感识别

G. S, Akshat Anand, Astha Vijayvargiya, Pushpalatha M, Vaishnavi Moorthy, Sumit Kumar, Harichandana Bss
{"title":"EmoSens:基于LightGBM传感器数据分析的情感识别","authors":"G. S, Akshat Anand, Astha Vijayvargiya, Pushpalatha M, Vaishnavi Moorthy, Sumit Kumar, Harichandana Bss","doi":"10.1109/CONECCT55679.2022.9865753","DOIUrl":null,"url":null,"abstract":"Smart wearables have played an integral part in our day to day life.From recording ECG signals to analysing body fat composition,the smart wearables can do it all. The smart devices encompass various sensors which can be employed to derive meaningful information regarding the user’s physical and psychological conditions.Our approach focuses on employing such sensors to identify and obtain the variations in the mood of a user at a given instance through the use of supervised ma-chine learning techniques.The study examines the performance of various supervised learning models such as Decision Trees, Random Forests, XGBoost, LightGBM on the dataset. With our proposed model, we obtained a high recognition rate of 92.5% using XGBoost and LightGBM for 9 different emotion classes.By utilizing this, we aim to improvise and suggest methods to aid emotion recognition for better mental health analysis and mood monitoring.","PeriodicalId":380005,"journal":{"name":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"EmoSens: Emotion Recognition based on Sensor data analysis using LightGBM\",\"authors\":\"G. S, Akshat Anand, Astha Vijayvargiya, Pushpalatha M, Vaishnavi Moorthy, Sumit Kumar, Harichandana Bss\",\"doi\":\"10.1109/CONECCT55679.2022.9865753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart wearables have played an integral part in our day to day life.From recording ECG signals to analysing body fat composition,the smart wearables can do it all. The smart devices encompass various sensors which can be employed to derive meaningful information regarding the user’s physical and psychological conditions.Our approach focuses on employing such sensors to identify and obtain the variations in the mood of a user at a given instance through the use of supervised ma-chine learning techniques.The study examines the performance of various supervised learning models such as Decision Trees, Random Forests, XGBoost, LightGBM on the dataset. With our proposed model, we obtained a high recognition rate of 92.5% using XGBoost and LightGBM for 9 different emotion classes.By utilizing this, we aim to improvise and suggest methods to aid emotion recognition for better mental health analysis and mood monitoring.\",\"PeriodicalId\":380005,\"journal\":{\"name\":\"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONECCT55679.2022.9865753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT55679.2022.9865753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

智能可穿戴设备在我们的日常生活中扮演着不可或缺的角色。从记录心电图信号到分析身体脂肪成分,智能可穿戴设备可以做到这一切。智能设备包含各种传感器,可用于获取有关用户的身体和心理状况的有意义的信息。我们的方法侧重于通过使用有监督的机器学习技术,使用这种传感器来识别和获取给定实例下用户情绪的变化。本研究考察了决策树、随机森林、XGBoost、LightGBM等各种监督学习模型在数据集上的性能。使用我们提出的模型,我们使用XGBoost和LightGBM对9种不同的情绪类别获得了92.5%的高识别率。通过利用这一点,我们的目标是即兴创作和建议帮助情绪识别的方法,以更好地进行心理健康分析和情绪监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EmoSens: Emotion Recognition based on Sensor data analysis using LightGBM
Smart wearables have played an integral part in our day to day life.From recording ECG signals to analysing body fat composition,the smart wearables can do it all. The smart devices encompass various sensors which can be employed to derive meaningful information regarding the user’s physical and psychological conditions.Our approach focuses on employing such sensors to identify and obtain the variations in the mood of a user at a given instance through the use of supervised ma-chine learning techniques.The study examines the performance of various supervised learning models such as Decision Trees, Random Forests, XGBoost, LightGBM on the dataset. With our proposed model, we obtained a high recognition rate of 92.5% using XGBoost and LightGBM for 9 different emotion classes.By utilizing this, we aim to improvise and suggest methods to aid emotion recognition for better mental health analysis and mood monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信