遥感图像多源分类的深度学习方法

Huda Alhawiti, Y. Bazi, M. M. Al Rahhal, H. Alhichri, M. Zuair
{"title":"遥感图像多源分类的深度学习方法","authors":"Huda Alhawiti, Y. Bazi, M. M. Al Rahhal, H. Alhichri, M. Zuair","doi":"10.1109/ICCAIS48893.2020.9096746","DOIUrl":null,"url":null,"abstract":"In this paper, we present a deep learning approach for learning for multiple remote sensing sources. The method starts by eliminating the distribution shift between the different sources and the target dataset using an adversarial learning approach based on min-max entropy optimization. After convergence, the results are aggregated using an average fusion layer. As pre-trained CNN we use in the work the recent state-of-the-art EfficientNet models. In the experiments, we assess the method on four remote sensing datasets acquired over different locations of the earth’s surface and are labeled by different experts. The obtained results confirm the promising capability of the proposed method.","PeriodicalId":422184,"journal":{"name":"2020 3rd International Conference on Computer Applications & Information Security (ICCAIS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning approach for Multiple Source Classification in Remote Sensing Imagery\",\"authors\":\"Huda Alhawiti, Y. Bazi, M. M. Al Rahhal, H. Alhichri, M. Zuair\",\"doi\":\"10.1109/ICCAIS48893.2020.9096746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a deep learning approach for learning for multiple remote sensing sources. The method starts by eliminating the distribution shift between the different sources and the target dataset using an adversarial learning approach based on min-max entropy optimization. After convergence, the results are aggregated using an average fusion layer. As pre-trained CNN we use in the work the recent state-of-the-art EfficientNet models. In the experiments, we assess the method on four remote sensing datasets acquired over different locations of the earth’s surface and are labeled by different experts. The obtained results confirm the promising capability of the proposed method.\",\"PeriodicalId\":422184,\"journal\":{\"name\":\"2020 3rd International Conference on Computer Applications & Information Security (ICCAIS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Computer Applications & Information Security (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS48893.2020.9096746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Computer Applications & Information Security (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS48893.2020.9096746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种用于多遥感源学习的深度学习方法。该方法首先使用基于最小-最大熵优化的对抗性学习方法消除不同源和目标数据集之间的分布偏移。收敛后,使用平均融合层对结果进行聚合。作为预训练的CNN,我们在工作中使用了最新的最先进的effentnet模型。在实验中,我们对在地球表面不同位置获得的四个遥感数据集进行了评估,这些数据集由不同的专家标记。所得结果证实了该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning approach for Multiple Source Classification in Remote Sensing Imagery
In this paper, we present a deep learning approach for learning for multiple remote sensing sources. The method starts by eliminating the distribution shift between the different sources and the target dataset using an adversarial learning approach based on min-max entropy optimization. After convergence, the results are aggregated using an average fusion layer. As pre-trained CNN we use in the work the recent state-of-the-art EfficientNet models. In the experiments, we assess the method on four remote sensing datasets acquired over different locations of the earth’s surface and are labeled by different experts. The obtained results confirm the promising capability of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信