关于平摊分支程序复杂度的注记

Aaron Potechin
{"title":"关于平摊分支程序复杂度的注记","authors":"Aaron Potechin","doi":"10.4230/LIPIcs.CCC.2017.4","DOIUrl":null,"url":null,"abstract":"In this paper, we show that while almost all functions require exponential size branching programs to compute, for all functions $f$ there is a branching program computing a doubly exponential number of copies of $f$ which has linear size per copy of $f$. This result disproves a conjecture about non-uniform catalytic computation, rules out a certain type of bottleneck argument for proving non-monotone space lower bounds, and can be thought of as a constructive analogue of Razborov's result that submodular complexity measures have maximum value $O(n)$.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Note on Amortized Branching Program Complexity\",\"authors\":\"Aaron Potechin\",\"doi\":\"10.4230/LIPIcs.CCC.2017.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show that while almost all functions require exponential size branching programs to compute, for all functions $f$ there is a branching program computing a doubly exponential number of copies of $f$ which has linear size per copy of $f$. This result disproves a conjecture about non-uniform catalytic computation, rules out a certain type of bottleneck argument for proving non-monotone space lower bounds, and can be thought of as a constructive analogue of Razborov's result that submodular complexity measures have maximum value $O(n)$.\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2017.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2017.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们证明了虽然几乎所有函数都需要指数大小的分支程序来计算,但对于所有函数$f$,存在一个分支程序来计算$f$的双指数数量的副本,该副本具有线性大小的$f$。这一结果否定了关于非均匀催化计算的一个猜想,排除了证明非单调空间下界的一类瓶颈论证,并且可以被认为是Razborov关于次模复杂度测度有最大值$O(n)$的结果的建设性模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Amortized Branching Program Complexity
In this paper, we show that while almost all functions require exponential size branching programs to compute, for all functions $f$ there is a branching program computing a doubly exponential number of copies of $f$ which has linear size per copy of $f$. This result disproves a conjecture about non-uniform catalytic computation, rules out a certain type of bottleneck argument for proving non-monotone space lower bounds, and can be thought of as a constructive analogue of Razborov's result that submodular complexity measures have maximum value $O(n)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信