高阶局部自相关特征对m型超声图像肝硬化分类的提示

K. Fujino, Y. Mitani, Takaya Hayashi, Y. Fujita, Y. Hamamoto, Makoto Segawa, S. Terai, I. Sakaida
{"title":"高阶局部自相关特征对m型超声图像肝硬化分类的提示","authors":"K. Fujino, Y. Mitani, Takaya Hayashi, Y. Fujita, Y. Hamamoto, Makoto Segawa, S. Terai, I. Sakaida","doi":"10.1109/SOCPAR.2013.7054099","DOIUrl":null,"url":null,"abstract":"Ultrasound images are widely used for diagnosis of liver cirrhosis. In liver cirrhosis classification using M-mode ultrasound images, Zhou's method has been shown to be effective. However, in Zhou's approach, the liver cirrhosis classification performance depends on the accuracy of the abdominal aorta wall extraction. Therefore, we examine to classify the liver cirrhosis not using the abdominal aorta wall extraction process. In this paper, we propose a liver cirrhosis classification method using higher-order local auto-correlation (HLAC) features. Furthermore, we also propose to use image processing techniques of a thresholding technique and a shading technique to effectively extract the HLAC features. Experimental results show that the proposed method is promising.","PeriodicalId":315126,"journal":{"name":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note of liver cirrhosis classification on M-mode ultrasound images by higher-order local auto-correlation features\",\"authors\":\"K. Fujino, Y. Mitani, Takaya Hayashi, Y. Fujita, Y. Hamamoto, Makoto Segawa, S. Terai, I. Sakaida\",\"doi\":\"10.1109/SOCPAR.2013.7054099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasound images are widely used for diagnosis of liver cirrhosis. In liver cirrhosis classification using M-mode ultrasound images, Zhou's method has been shown to be effective. However, in Zhou's approach, the liver cirrhosis classification performance depends on the accuracy of the abdominal aorta wall extraction. Therefore, we examine to classify the liver cirrhosis not using the abdominal aorta wall extraction process. In this paper, we propose a liver cirrhosis classification method using higher-order local auto-correlation (HLAC) features. Furthermore, we also propose to use image processing techniques of a thresholding technique and a shading technique to effectively extract the HLAC features. Experimental results show that the proposed method is promising.\",\"PeriodicalId\":315126,\"journal\":{\"name\":\"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2013.7054099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2013.7054099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

超声图像被广泛用于肝硬化的诊断。在m型超声图像肝硬化分类中,Zhou的方法已被证明是有效的。然而,在周的方法中,肝硬化的分类性能取决于腹主动脉壁提取的准确性。因此,我们探讨了不采用腹主动脉壁提取术的肝硬化的分类。本文提出了一种基于高阶局部自相关(HLAC)特征的肝硬化分类方法。此外,我们还提出了使用阈值分割技术和阴影技术的图像处理技术来有效地提取HLAC特征。实验结果表明,该方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note of liver cirrhosis classification on M-mode ultrasound images by higher-order local auto-correlation features
Ultrasound images are widely used for diagnosis of liver cirrhosis. In liver cirrhosis classification using M-mode ultrasound images, Zhou's method has been shown to be effective. However, in Zhou's approach, the liver cirrhosis classification performance depends on the accuracy of the abdominal aorta wall extraction. Therefore, we examine to classify the liver cirrhosis not using the abdominal aorta wall extraction process. In this paper, we propose a liver cirrhosis classification method using higher-order local auto-correlation (HLAC) features. Furthermore, we also propose to use image processing techniques of a thresholding technique and a shading technique to effectively extract the HLAC features. Experimental results show that the proposed method is promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信