一种统一的自我关注问题生成方法

Stalin Varanasi, Saadullah Amin, G. Neumann
{"title":"一种统一的自我关注问题生成方法","authors":"Stalin Varanasi, Saadullah Amin, G. Neumann","doi":"10.18653/v1/2020.nlp4convai-1.3","DOIUrl":null,"url":null,"abstract":"Contextualized word embeddings provide better initialization for neural networks that deal with various natural language understanding (NLU) tasks including Question Answering (QA) and more recently, Question Generation(QG). Apart from providing meaningful word representations, pre-trained transformer models (Vaswani et al., 2017), such as BERT (Devlin et al., 2019) also provide self-attentions which encode syntactic information that can be probed for dependency parsing (Hewitt and Manning, 2019) and POStagging (Coenen et al., 2019). In this paper, we show that the information from selfattentions of BERT are useful for language modeling of questions conditioned on paragraph and answer phrases. To control the attention span, we use semi-diagonal mask and utilize a shared model for encoding and decoding, unlike sequence-to-sequence. We further employ copy-mechanism over self-attentions to acheive state-of-the-art results for Question Generation on SQuAD v1.1 (Rajpurkar et al., 2016).","PeriodicalId":407342,"journal":{"name":"Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"CopyBERT: A Unified Approach to Question Generation with Self-Attention\",\"authors\":\"Stalin Varanasi, Saadullah Amin, G. Neumann\",\"doi\":\"10.18653/v1/2020.nlp4convai-1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contextualized word embeddings provide better initialization for neural networks that deal with various natural language understanding (NLU) tasks including Question Answering (QA) and more recently, Question Generation(QG). Apart from providing meaningful word representations, pre-trained transformer models (Vaswani et al., 2017), such as BERT (Devlin et al., 2019) also provide self-attentions which encode syntactic information that can be probed for dependency parsing (Hewitt and Manning, 2019) and POStagging (Coenen et al., 2019). In this paper, we show that the information from selfattentions of BERT are useful for language modeling of questions conditioned on paragraph and answer phrases. To control the attention span, we use semi-diagonal mask and utilize a shared model for encoding and decoding, unlike sequence-to-sequence. We further employ copy-mechanism over self-attentions to acheive state-of-the-art results for Question Generation on SQuAD v1.1 (Rajpurkar et al., 2016).\",\"PeriodicalId\":407342,\"journal\":{\"name\":\"Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.nlp4convai-1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.nlp4convai-1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

上下文化词嵌入为处理各种自然语言理解(NLU)任务(包括问答(QA)和最近的问题生成(QG))的神经网络提供了更好的初始化。除了提供有意义的单词表示外,预训练的转换模型(Vaswani等人,2017),如BERT (Devlin等人,2019)还提供自关注,其编码的句法信息可以用于依赖性分析(Hewitt和Manning, 2019)和POStagging (Coenen等人,2019)。在本文中,我们证明了BERT的自关注信息对于以段落和回答短语为条件的问题的语言建模是有用的。为了控制注意力广度,我们使用半对角掩码,并利用共享模型进行编码和解码,而不像序列对序列。我们进一步采用复制机制而不是自我关注,以在SQuAD v1.1上获得最先进的问题生成结果(Rajpurkar et al., 2016)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CopyBERT: A Unified Approach to Question Generation with Self-Attention
Contextualized word embeddings provide better initialization for neural networks that deal with various natural language understanding (NLU) tasks including Question Answering (QA) and more recently, Question Generation(QG). Apart from providing meaningful word representations, pre-trained transformer models (Vaswani et al., 2017), such as BERT (Devlin et al., 2019) also provide self-attentions which encode syntactic information that can be probed for dependency parsing (Hewitt and Manning, 2019) and POStagging (Coenen et al., 2019). In this paper, we show that the information from selfattentions of BERT are useful for language modeling of questions conditioned on paragraph and answer phrases. To control the attention span, we use semi-diagonal mask and utilize a shared model for encoding and decoding, unlike sequence-to-sequence. We further employ copy-mechanism over self-attentions to acheive state-of-the-art results for Question Generation on SQuAD v1.1 (Rajpurkar et al., 2016).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信