Daiki Namikoshi, Manabu Ohta, A. Takasu, J. Adachi
{"title":"使用少量训练数据从参考字符串中提取基于crf的书目","authors":"Daiki Namikoshi, Manabu Ohta, A. Takasu, J. Adachi","doi":"10.1109/ICDIM.2017.8244665","DOIUrl":null,"url":null,"abstract":"The effective use of digital libraries demands maintenance of bibliographic databases. Useful bibliographic information appears in the reference fields of academic papers, so we are developing a method for automatic extraction of bibliographic information from reference strings using a conditional random field (CRF). However, at least a few hundred reference strings are necessary to learn an accurate CRF. In this paper, we propose active learning and transfer learning techniques to reduce the required training data for CRFs. We evaluate extraction accuracies and the associated training cost by experiments.","PeriodicalId":144953,"journal":{"name":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","volume":"133 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CRF-based bibliography extraction from reference strings using a small amount of training data\",\"authors\":\"Daiki Namikoshi, Manabu Ohta, A. Takasu, J. Adachi\",\"doi\":\"10.1109/ICDIM.2017.8244665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effective use of digital libraries demands maintenance of bibliographic databases. Useful bibliographic information appears in the reference fields of academic papers, so we are developing a method for automatic extraction of bibliographic information from reference strings using a conditional random field (CRF). However, at least a few hundred reference strings are necessary to learn an accurate CRF. In this paper, we propose active learning and transfer learning techniques to reduce the required training data for CRFs. We evaluate extraction accuracies and the associated training cost by experiments.\",\"PeriodicalId\":144953,\"journal\":{\"name\":\"2017 Twelfth International Conference on Digital Information Management (ICDIM)\",\"volume\":\"133 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Twelfth International Conference on Digital Information Management (ICDIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2017.8244665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2017.8244665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CRF-based bibliography extraction from reference strings using a small amount of training data
The effective use of digital libraries demands maintenance of bibliographic databases. Useful bibliographic information appears in the reference fields of academic papers, so we are developing a method for automatic extraction of bibliographic information from reference strings using a conditional random field (CRF). However, at least a few hundred reference strings are necessary to learn an accurate CRF. In this paper, we propose active learning and transfer learning techniques to reduce the required training data for CRFs. We evaluate extraction accuracies and the associated training cost by experiments.