异步MPC与严格诚实的大多数使用非模棱两可

M. Backes, Fabian Bendun, Ashish Choudhury, Aniket Kate
{"title":"异步MPC与严格诚实的大多数使用非模棱两可","authors":"M. Backes, Fabian Bendun, Ashish Choudhury, Aniket Kate","doi":"10.1145/2611462.2611490","DOIUrl":null,"url":null,"abstract":"Multiparty computation (MPC) among n parties can tolerate up to t < n/2 active corruptions in a synchronous communication setting; however, in an asynchronous communication setting, the resiliency bound decreases to only t < n/3 active corruptions. We improve the resiliency bound for asynchronous MPC (AMPC) to match synchronous MPC using non-equivocation. Non-equivocation is a message authentication mechanism to restrict a corrupted sender from making conflicting statements to different (honest) parties. It can be implemented using an increment-only counter and a digital signature oracle, realizable with trusted hardware modules readily available in commodity computers and smartphone devices. A non-equivocation mechanism can also be transferable and allows a receiver to verifiably transfer the authenticated statement to other parties. In this work, using transferable non-equivocation, we present an AMPC protocol tolerating t < n/2 faults. From a practical point of view, our AMPC protocol requires fewer setup assumptions than the previous AMPC protocol with t < n/2 by Beerliova-Trubiniova, Hirt and Nielsen [PODC 2010]: unlike their AMPC protocol, it does not require any synchronous broadcast round at the beginning of the protocol and avoids the threshold homomorphic encryption setup assumption. Moreover, our AMPC protocol is also efficient and provides a gain of Θ(n) in the communication complexity per multiplication gate, over the AMPC protocol of Beerliova-Trubiniova et al. In the process, using non-equivocation, we also define the first asynchronous verifiable secret sharing (AVSS) scheme with t < n/2, which is of independent interest to threshold cryptography.","PeriodicalId":186800,"journal":{"name":"Proceedings of the 2014 ACM symposium on Principles of distributed computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Asynchronous MPC with a strict honest majority using non-equivocation\",\"authors\":\"M. Backes, Fabian Bendun, Ashish Choudhury, Aniket Kate\",\"doi\":\"10.1145/2611462.2611490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiparty computation (MPC) among n parties can tolerate up to t < n/2 active corruptions in a synchronous communication setting; however, in an asynchronous communication setting, the resiliency bound decreases to only t < n/3 active corruptions. We improve the resiliency bound for asynchronous MPC (AMPC) to match synchronous MPC using non-equivocation. Non-equivocation is a message authentication mechanism to restrict a corrupted sender from making conflicting statements to different (honest) parties. It can be implemented using an increment-only counter and a digital signature oracle, realizable with trusted hardware modules readily available in commodity computers and smartphone devices. A non-equivocation mechanism can also be transferable and allows a receiver to verifiably transfer the authenticated statement to other parties. In this work, using transferable non-equivocation, we present an AMPC protocol tolerating t < n/2 faults. From a practical point of view, our AMPC protocol requires fewer setup assumptions than the previous AMPC protocol with t < n/2 by Beerliova-Trubiniova, Hirt and Nielsen [PODC 2010]: unlike their AMPC protocol, it does not require any synchronous broadcast round at the beginning of the protocol and avoids the threshold homomorphic encryption setup assumption. Moreover, our AMPC protocol is also efficient and provides a gain of Θ(n) in the communication complexity per multiplication gate, over the AMPC protocol of Beerliova-Trubiniova et al. In the process, using non-equivocation, we also define the first asynchronous verifiable secret sharing (AVSS) scheme with t < n/2, which is of independent interest to threshold cryptography.\",\"PeriodicalId\":186800,\"journal\":{\"name\":\"Proceedings of the 2014 ACM symposium on Principles of distributed computing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM symposium on Principles of distributed computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2611462.2611490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2611462.2611490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在同步通信设置中,n方之间的多方计算(MPC)可以容忍多达t < n/2的主动损坏;然而,在异步通信设置中,弹性界限降低到只有t < n/3个活动损坏。我们改进了异步MPC (AMPC)的弹性边界,使其与同步MPC相匹配。不含糊其辞是一种消息验证机制,用于限制损坏的发送方向不同(诚实)方发表冲突声明。它可以使用仅增量计数器和数字签名oracle来实现,可以使用商用计算机和智能手机设备中现成的可信硬件模块来实现。非模棱两可机制也可以是可转移的,并允许接收方可验证地将经过验证的声明传输给其他方。在这项工作中,我们使用可转移的非模棱两可,提出了一个允许t < n/2故障的AMPC协议。从实用的角度来看,我们的AMPC协议比之前由Beerliova-Trubiniova, Hirt和Nielsen [PODC 2010]提出的t < n/2的AMPC协议需要更少的设置假设:与他们的AMPC协议不同,它不需要在协议开始时进行任何同步广播轮,并且避免了阈值同态加密设置假设。此外,我们的AMPC协议也很高效,与Beerliova-Trubiniova等人的AMPC协议相比,每个乘法门的通信复杂度增加了Θ(n)。在此过程中,我们还定义了第一个t < n/2的异步可验证秘密共享(AVSS)方案,该方案对阈值密码学具有独立的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asynchronous MPC with a strict honest majority using non-equivocation
Multiparty computation (MPC) among n parties can tolerate up to t < n/2 active corruptions in a synchronous communication setting; however, in an asynchronous communication setting, the resiliency bound decreases to only t < n/3 active corruptions. We improve the resiliency bound for asynchronous MPC (AMPC) to match synchronous MPC using non-equivocation. Non-equivocation is a message authentication mechanism to restrict a corrupted sender from making conflicting statements to different (honest) parties. It can be implemented using an increment-only counter and a digital signature oracle, realizable with trusted hardware modules readily available in commodity computers and smartphone devices. A non-equivocation mechanism can also be transferable and allows a receiver to verifiably transfer the authenticated statement to other parties. In this work, using transferable non-equivocation, we present an AMPC protocol tolerating t < n/2 faults. From a practical point of view, our AMPC protocol requires fewer setup assumptions than the previous AMPC protocol with t < n/2 by Beerliova-Trubiniova, Hirt and Nielsen [PODC 2010]: unlike their AMPC protocol, it does not require any synchronous broadcast round at the beginning of the protocol and avoids the threshold homomorphic encryption setup assumption. Moreover, our AMPC protocol is also efficient and provides a gain of Θ(n) in the communication complexity per multiplication gate, over the AMPC protocol of Beerliova-Trubiniova et al. In the process, using non-equivocation, we also define the first asynchronous verifiable secret sharing (AVSS) scheme with t < n/2, which is of independent interest to threshold cryptography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信