基于FPGA-GPU的高能效混合嵌入式平台,加速人脸识别应用

S. Rethinagiri, Oscar Palomar, J. Moreno, O. Unsal, A. Cristal
{"title":"基于FPGA-GPU的高能效混合嵌入式平台,加速人脸识别应用","authors":"S. Rethinagiri, Oscar Palomar, J. Moreno, O. Unsal, A. Cristal","doi":"10.1109/CoolChips.2015.7158532","DOIUrl":null,"url":null,"abstract":"Nowadays face recognition application is widely used in various industries such as traffic, safety, medical engineering, etc. In this paper, we propose a power and energy efficient heterogeneous platform to accelerate face recognition applications. To achieve this efficiency, we propose a novel hybrid platform which consists of a Xilinx Zynq (ARM+FPGA) and an NVidia's Jetson TK1 (ARM+GPU) coupled with PCIe card. In this application, we optimized local binary pattern and eigenvalue based face detection and recognition in order to achieve a speedup of 69x when compared to sequential execution on the ARM core, 4.8x against Zynq platform (ARM+FPGA), 3.2x against NVidia platform (ARM+GPU) and 40% more energy efficient against sequential execution.","PeriodicalId":358999,"journal":{"name":"2015 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS XVIII)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An energy efficient hybrid FPGA-GPU based embedded platform to accelerate face recognition application\",\"authors\":\"S. Rethinagiri, Oscar Palomar, J. Moreno, O. Unsal, A. Cristal\",\"doi\":\"10.1109/CoolChips.2015.7158532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays face recognition application is widely used in various industries such as traffic, safety, medical engineering, etc. In this paper, we propose a power and energy efficient heterogeneous platform to accelerate face recognition applications. To achieve this efficiency, we propose a novel hybrid platform which consists of a Xilinx Zynq (ARM+FPGA) and an NVidia's Jetson TK1 (ARM+GPU) coupled with PCIe card. In this application, we optimized local binary pattern and eigenvalue based face detection and recognition in order to achieve a speedup of 69x when compared to sequential execution on the ARM core, 4.8x against Zynq platform (ARM+FPGA), 3.2x against NVidia platform (ARM+GPU) and 40% more energy efficient against sequential execution.\",\"PeriodicalId\":358999,\"journal\":{\"name\":\"2015 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS XVIII)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS XVIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoolChips.2015.7158532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS XVIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoolChips.2015.7158532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

目前,人脸识别应用已广泛应用于交通、安全、医疗工程等各个行业。在本文中,我们提出了一个功率和能源效率高的异构平台来加速人脸识别的应用。为了实现这种效率,我们提出了一种新的混合平台,该平台由Xilinx Zynq (ARM+FPGA)和NVidia的Jetson TK1 (ARM+GPU)以及PCIe卡组成。在本应用中,我们优化了基于局部二进制模式和特征值的人脸检测和识别,与在ARM核心上的顺序执行相比,速度提高了69倍,与Zynq平台(ARM+FPGA)相比提高了4.8倍,与NVidia平台(ARM+GPU)相比提高了3.2倍,与顺序执行相比节能了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An energy efficient hybrid FPGA-GPU based embedded platform to accelerate face recognition application
Nowadays face recognition application is widely used in various industries such as traffic, safety, medical engineering, etc. In this paper, we propose a power and energy efficient heterogeneous platform to accelerate face recognition applications. To achieve this efficiency, we propose a novel hybrid platform which consists of a Xilinx Zynq (ARM+FPGA) and an NVidia's Jetson TK1 (ARM+GPU) coupled with PCIe card. In this application, we optimized local binary pattern and eigenvalue based face detection and recognition in order to achieve a speedup of 69x when compared to sequential execution on the ARM core, 4.8x against Zynq platform (ARM+FPGA), 3.2x against NVidia platform (ARM+GPU) and 40% more energy efficient against sequential execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信