在具有任意不确定性的情况下使用奖励期望的强化学习

Yubin Wang, Yifeng Sun, Jiang Wu, Hao Hu, Zhiqiang Wu, Weigui Huang
{"title":"在具有任意不确定性的情况下使用奖励期望的强化学习","authors":"Yubin Wang, Yifeng Sun, Jiang Wu, Hao Hu, Zhiqiang Wu, Weigui Huang","doi":"10.1109/CoG51982.2022.9893651","DOIUrl":null,"url":null,"abstract":"In scenarios with aleatoric uncertainties, the reward got by an agent when executing the same action in the same state is random, which can reduce the stability and convergence speed of the reinforcement algorithms. However, in most scenarios, reward functions have regularity, and their expectations are determined, which can be got through models or sample statistics. This paper discusses the distribution relationship between reward functions and value functions in scenarios with aleatoric uncertainties and proves the feasibility of using reward expectations for reinforcement learning. Finally, experiments show that algorithms have better stability and convergence speed when using reward expectations than random rewards.","PeriodicalId":394281,"journal":{"name":"2022 IEEE Conference on Games (CoG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Learning using Reward Expectations in Scenarios with Aleatoric Uncertainties\",\"authors\":\"Yubin Wang, Yifeng Sun, Jiang Wu, Hao Hu, Zhiqiang Wu, Weigui Huang\",\"doi\":\"10.1109/CoG51982.2022.9893651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In scenarios with aleatoric uncertainties, the reward got by an agent when executing the same action in the same state is random, which can reduce the stability and convergence speed of the reinforcement algorithms. However, in most scenarios, reward functions have regularity, and their expectations are determined, which can be got through models or sample statistics. This paper discusses the distribution relationship between reward functions and value functions in scenarios with aleatoric uncertainties and proves the feasibility of using reward expectations for reinforcement learning. Finally, experiments show that algorithms have better stability and convergence speed when using reward expectations than random rewards.\",\"PeriodicalId\":394281,\"journal\":{\"name\":\"2022 IEEE Conference on Games (CoG)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Conference on Games (CoG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoG51982.2022.9893651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Games (CoG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoG51982.2022.9893651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在具有任意不确定性的情况下,智能体在相同状态下执行相同动作所获得的奖励是随机的,这会降低强化算法的稳定性和收敛速度。然而,在大多数情况下,奖励函数具有规律性,其期望是确定的,可以通过模型或样本统计得到。本文讨论了具有任意不确定性场景下奖励函数与价值函数的分布关系,并证明了使用奖励期望进行强化学习的可行性。最后,实验表明,与随机奖励相比,使用期望奖励的算法具有更好的稳定性和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning using Reward Expectations in Scenarios with Aleatoric Uncertainties
In scenarios with aleatoric uncertainties, the reward got by an agent when executing the same action in the same state is random, which can reduce the stability and convergence speed of the reinforcement algorithms. However, in most scenarios, reward functions have regularity, and their expectations are determined, which can be got through models or sample statistics. This paper discusses the distribution relationship between reward functions and value functions in scenarios with aleatoric uncertainties and proves the feasibility of using reward expectations for reinforcement learning. Finally, experiments show that algorithms have better stability and convergence speed when using reward expectations than random rewards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信