阶段遗传规划在旅行商问题中的应用

D. Chitty, E. Keedwell
{"title":"阶段遗传规划在旅行商问题中的应用","authors":"D. Chitty, E. Keedwell","doi":"10.1145/3583133.3590673","DOIUrl":null,"url":null,"abstract":"The Traveling Salesman Problem (TSP) is a difficult permutation-based optimisation problem typically solved using heuristics or meta-heuristics which search the solution problem space. An alternative is to find sets of manipulations to a solution which lead to optimality. Hyper-heuristics search this space applying heuristics sequentially, similar to a program. Genetic Programming (GP) evolves programs typically for classification or regression problems. This paper hypothesizes that GP can be used to evolve heuristic programs to directly solve the TSP. However, evolving a full program to solve the TSP is likely difficult due to required length and complexity. Consequently, a phased GP method is proposed whereby after a phase of generations the best program is saved and executed. The subsequent generation phase restarts operating on this saved program output. A full program is evolved piecemeal. Experiments demonstrate that whilst pure GP cannot solve TSP instances when using simple operators, Phased-GP can obtain solutions within 4% of optimal for TSPs of several hundred cities. Moreover, Phased-GP operates up to nine times faster than pure GP.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phased Genetic Programming for Application to the Traveling Salesman Problem\",\"authors\":\"D. Chitty, E. Keedwell\",\"doi\":\"10.1145/3583133.3590673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Traveling Salesman Problem (TSP) is a difficult permutation-based optimisation problem typically solved using heuristics or meta-heuristics which search the solution problem space. An alternative is to find sets of manipulations to a solution which lead to optimality. Hyper-heuristics search this space applying heuristics sequentially, similar to a program. Genetic Programming (GP) evolves programs typically for classification or regression problems. This paper hypothesizes that GP can be used to evolve heuristic programs to directly solve the TSP. However, evolving a full program to solve the TSP is likely difficult due to required length and complexity. Consequently, a phased GP method is proposed whereby after a phase of generations the best program is saved and executed. The subsequent generation phase restarts operating on this saved program output. A full program is evolved piecemeal. Experiments demonstrate that whilst pure GP cannot solve TSP instances when using simple operators, Phased-GP can obtain solutions within 4% of optimal for TSPs of several hundred cities. Moreover, Phased-GP operates up to nine times faster than pure GP.\",\"PeriodicalId\":422029,\"journal\":{\"name\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583133.3590673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

旅行商问题(TSP)是一个复杂的基于排列的优化问题,通常使用启发式或元启发式搜索解空间来解决。另一种方法是找到一组导致最优性的解决方案的操作。超启发式算法按顺序应用启发式算法搜索这个空间,类似于程序。遗传规划(GP)进化程序通常用于分类或回归问题。本文假设GP可以用来进化启发式程序来直接求解TSP。然而,由于所需的长度和复杂性,发展一个完整的程序来解决TSP可能很困难。因此,提出了一种分阶段GP方法,即在一个阶段的代之后保存并执行最佳程序。随后的生成阶段在这个保存的程序输出上重新开始操作。一个完整的程序是逐步发展起来的。实验表明,当使用简单算子时,纯GP无法求解TSP实例,而对于数百个城市的TSP,相位GP可以在最优的4%以内获得解。此外,phase -GP的运行速度比纯GP快9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phased Genetic Programming for Application to the Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is a difficult permutation-based optimisation problem typically solved using heuristics or meta-heuristics which search the solution problem space. An alternative is to find sets of manipulations to a solution which lead to optimality. Hyper-heuristics search this space applying heuristics sequentially, similar to a program. Genetic Programming (GP) evolves programs typically for classification or regression problems. This paper hypothesizes that GP can be used to evolve heuristic programs to directly solve the TSP. However, evolving a full program to solve the TSP is likely difficult due to required length and complexity. Consequently, a phased GP method is proposed whereby after a phase of generations the best program is saved and executed. The subsequent generation phase restarts operating on this saved program output. A full program is evolved piecemeal. Experiments demonstrate that whilst pure GP cannot solve TSP instances when using simple operators, Phased-GP can obtain solutions within 4% of optimal for TSPs of several hundred cities. Moreover, Phased-GP operates up to nine times faster than pure GP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信