Meaghan Podlaski, L. Vanfretti, Abhijit Khare, H. Nademi, Phillip J. Ansell, K. Haran, T. Balachandran
{"title":"基于Modelica的CHEETA混合动力飞行器动力系统建模的初步研究","authors":"Meaghan Podlaski, L. Vanfretti, Abhijit Khare, H. Nademi, Phillip J. Ansell, K. Haran, T. Balachandran","doi":"10.2514/6.2020-3580","DOIUrl":null,"url":null,"abstract":"The aviation industry has been challenged to increase the sustainability of its technologies, which is the main driving force in research and exploration of fully electrified propulsion. This paper presents the initial steps in the design and modeling of the Cryogenic High-Efficiency Electrical Technologies for Aircraft (CHEETA) that would form the basis for hybrid-electric aircraft power systems. To this end, different power system configurations for fully electrified propulsion are proposed and analyzed. Novel, multi-domain components used in both the power system model and the cryogenic thermal system model are introduced and explained in detail. This paper also presents initial results for the different power system configurations under steady-state conditions.","PeriodicalId":403355,"journal":{"name":"2020 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Initial Steps in Modeling of CHEETA Hybrid Propulsion Aircraft Vehicle Power Systems using Modelica\",\"authors\":\"Meaghan Podlaski, L. Vanfretti, Abhijit Khare, H. Nademi, Phillip J. Ansell, K. Haran, T. Balachandran\",\"doi\":\"10.2514/6.2020-3580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aviation industry has been challenged to increase the sustainability of its technologies, which is the main driving force in research and exploration of fully electrified propulsion. This paper presents the initial steps in the design and modeling of the Cryogenic High-Efficiency Electrical Technologies for Aircraft (CHEETA) that would form the basis for hybrid-electric aircraft power systems. To this end, different power system configurations for fully electrified propulsion are proposed and analyzed. Novel, multi-domain components used in both the power system model and the cryogenic thermal system model are introduced and explained in detail. This paper also presents initial results for the different power system configurations under steady-state conditions.\",\"PeriodicalId\":403355,\"journal\":{\"name\":\"2020 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.2020-3580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2020-3580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Initial Steps in Modeling of CHEETA Hybrid Propulsion Aircraft Vehicle Power Systems using Modelica
The aviation industry has been challenged to increase the sustainability of its technologies, which is the main driving force in research and exploration of fully electrified propulsion. This paper presents the initial steps in the design and modeling of the Cryogenic High-Efficiency Electrical Technologies for Aircraft (CHEETA) that would form the basis for hybrid-electric aircraft power systems. To this end, different power system configurations for fully electrified propulsion are proposed and analyzed. Novel, multi-domain components used in both the power system model and the cryogenic thermal system model are introduced and explained in detail. This paper also presents initial results for the different power system configurations under steady-state conditions.