具有环面作用的图超曲面及Aluffi的一个猜想

G. Denham, Delphine Pol, M. Schulze, U. Walther
{"title":"具有环面作用的图超曲面及Aluffi的一个猜想","authors":"G. Denham, Delphine Pol, M. Schulze, U. Walther","doi":"10.4310/CNTP.2021.v15.n3.a1","DOIUrl":null,"url":null,"abstract":"Generalizing the star graphs of Muller-Stach and Westrich, we describe a class of graphs whose associated graph hypersurface is equipped with a non-trivial torus action. For such graphs, we show that the Euler characteristic of the corresponding projective graph hypersurface complement is zero. In contrast, we also show that the Euler characteristic in question can take any integer value for a suitable graph. This disproves a conjecture of Aluffi in a strong sense.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Graph hypersurfaces with torus action and a conjecture of Aluffi\",\"authors\":\"G. Denham, Delphine Pol, M. Schulze, U. Walther\",\"doi\":\"10.4310/CNTP.2021.v15.n3.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalizing the star graphs of Muller-Stach and Westrich, we describe a class of graphs whose associated graph hypersurface is equipped with a non-trivial torus action. For such graphs, we show that the Euler characteristic of the corresponding projective graph hypersurface complement is zero. In contrast, we also show that the Euler characteristic in question can take any integer value for a suitable graph. This disproves a conjecture of Aluffi in a strong sense.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2021.v15.n3.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CNTP.2021.v15.n3.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

推广Muller-Stach和Westrich的星图,我们描述了一类图的关联超曲面具有非平凡环面作用的星图。对于这样的图,我们证明了相应的射影图超曲面补的欧拉特征为零。相反,我们也证明了所讨论的欧拉特征可以取任意整数值。这在很大程度上否定了Aluffi的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph hypersurfaces with torus action and a conjecture of Aluffi
Generalizing the star graphs of Muller-Stach and Westrich, we describe a class of graphs whose associated graph hypersurface is equipped with a non-trivial torus action. For such graphs, we show that the Euler characteristic of the corresponding projective graph hypersurface complement is zero. In contrast, we also show that the Euler characteristic in question can take any integer value for a suitable graph. This disproves a conjecture of Aluffi in a strong sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信