基于自编码器技术的二维电阻抗断层图像重建方法

Yue Gao, Yewangqing Lu, Hui Li, Boxiao Liu, Yongfu Li, Mingyi Chen, Guoxing Wang, Y. Lian
{"title":"基于自编码器技术的二维电阻抗断层图像重建方法","authors":"Yue Gao, Yewangqing Lu, Hui Li, Boxiao Liu, Yongfu Li, Mingyi Chen, Guoxing Wang, Y. Lian","doi":"10.1109/BIOCAS.2019.8918979","DOIUrl":null,"url":null,"abstract":"Electrical Impedance Tomography is considered to be an alternative substitution to CT and MRI technologies as it is a non-invasive, safe medical imaging technology, and free of ionizing or heating radiation. Similar to CT and MRI technologies, reconstructing a two-dimensional EIT image is also considered an ill-posed and non-linear inverse problem, where the image quality is highly sensitive to the measurement data, and often random noise artifacts appear in the image with the different non-linear algorithms. Therefore, in this work, we have proposed a new EIT image reconstruction algorithm based on the convolution denoising autoencoder (CDAE) deep learning algorithm. Our EIT-CDAE used a convolutional neural network in the encoder and decoder network. From our experimental data using phantom data, our EIT-CDAE model has reconstructed a better EIT image quality, removing any noise artifacts, making it more robust compared to the conventional stacked autoencoder and traditional non-linear algorithms. The source code is available in the github: https://github.com/yongfu-li/eit-cdae-algorithm","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"EIT-CDAE: A 2-D Electrical Impedance Tomography Image Reconstruction Method Based on Auto Encoder Technique\",\"authors\":\"Yue Gao, Yewangqing Lu, Hui Li, Boxiao Liu, Yongfu Li, Mingyi Chen, Guoxing Wang, Y. Lian\",\"doi\":\"10.1109/BIOCAS.2019.8918979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical Impedance Tomography is considered to be an alternative substitution to CT and MRI technologies as it is a non-invasive, safe medical imaging technology, and free of ionizing or heating radiation. Similar to CT and MRI technologies, reconstructing a two-dimensional EIT image is also considered an ill-posed and non-linear inverse problem, where the image quality is highly sensitive to the measurement data, and often random noise artifacts appear in the image with the different non-linear algorithms. Therefore, in this work, we have proposed a new EIT image reconstruction algorithm based on the convolution denoising autoencoder (CDAE) deep learning algorithm. Our EIT-CDAE used a convolutional neural network in the encoder and decoder network. From our experimental data using phantom data, our EIT-CDAE model has reconstructed a better EIT image quality, removing any noise artifacts, making it more robust compared to the conventional stacked autoencoder and traditional non-linear algorithms. The source code is available in the github: https://github.com/yongfu-li/eit-cdae-algorithm\",\"PeriodicalId\":222264,\"journal\":{\"name\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2019.8918979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8918979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

电阻抗断层扫描被认为是CT和MRI技术的替代品,因为它是非侵入性的、安全的医学成像技术,并且没有电离或热辐射。与CT和MRI技术类似,二维EIT图像的重建也被认为是一个不适定和非线性逆问题,其中图像质量对测量数据高度敏感,并且使用不同的非线性算法通常会在图像中出现随机噪声伪影。因此,在这项工作中,我们提出了一种新的基于卷积去噪自编码器(CDAE)深度学习算法的EIT图像重建算法。我们的EIT-CDAE在编码器和解码器网络中使用了卷积神经网络。从我们使用幻影数据的实验数据来看,我们的EIT- cdae模型重建了更好的EIT图像质量,消除了任何噪声伪像,与传统的堆叠自编码器和传统的非线性算法相比,使其更具鲁棒性。源代码可在github: https://github.com/yongfu-li/eit-cdae-algorithm
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EIT-CDAE: A 2-D Electrical Impedance Tomography Image Reconstruction Method Based on Auto Encoder Technique
Electrical Impedance Tomography is considered to be an alternative substitution to CT and MRI technologies as it is a non-invasive, safe medical imaging technology, and free of ionizing or heating radiation. Similar to CT and MRI technologies, reconstructing a two-dimensional EIT image is also considered an ill-posed and non-linear inverse problem, where the image quality is highly sensitive to the measurement data, and often random noise artifacts appear in the image with the different non-linear algorithms. Therefore, in this work, we have proposed a new EIT image reconstruction algorithm based on the convolution denoising autoencoder (CDAE) deep learning algorithm. Our EIT-CDAE used a convolutional neural network in the encoder and decoder network. From our experimental data using phantom data, our EIT-CDAE model has reconstructed a better EIT image quality, removing any noise artifacts, making it more robust compared to the conventional stacked autoencoder and traditional non-linear algorithms. The source code is available in the github: https://github.com/yongfu-li/eit-cdae-algorithm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信