无人机光电平台仿生逆内模前馈控制

Zhide Zhang, Zhengjie Wang, Shuo Zhang
{"title":"无人机光电平台仿生逆内模前馈控制","authors":"Zhide Zhang, Zhengjie Wang, Shuo Zhang","doi":"10.1109/ICMIC.2018.8529912","DOIUrl":null,"url":null,"abstract":"The design of UAV photoelectric platform control system has been widely investigated for decades. One of its key aim is to isolate the UAV body motion while keep the line of sight (LOS) tracking the target. Inspired by the head rotation control of dragonfly, this paper presents a novel inverse internal model feedforward control scheme. The principle of this controller is twofold: 1) an integrated model of the photoelectric platform dynamics combined with the UAV body motion induced disturbance model is established as the internal model, 2) The deviation of the system output is taken as the expected output of the internal model. Furthermore, the internal model input is solved by a modified unknown input observer (UIO). Finally the control is completed by the feedforward of solved input. The numerical simulation shows the effectiveness of the controller.","PeriodicalId":262938,"journal":{"name":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bio-Inspired Inverse Internal Model Feedforward Control for UAV Photoelectric Platform\",\"authors\":\"Zhide Zhang, Zhengjie Wang, Shuo Zhang\",\"doi\":\"10.1109/ICMIC.2018.8529912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of UAV photoelectric platform control system has been widely investigated for decades. One of its key aim is to isolate the UAV body motion while keep the line of sight (LOS) tracking the target. Inspired by the head rotation control of dragonfly, this paper presents a novel inverse internal model feedforward control scheme. The principle of this controller is twofold: 1) an integrated model of the photoelectric platform dynamics combined with the UAV body motion induced disturbance model is established as the internal model, 2) The deviation of the system output is taken as the expected output of the internal model. Furthermore, the internal model input is solved by a modified unknown input observer (UIO). Finally the control is completed by the feedforward of solved input. The numerical simulation shows the effectiveness of the controller.\",\"PeriodicalId\":262938,\"journal\":{\"name\":\"2018 10th International Conference on Modelling, Identification and Control (ICMIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Modelling, Identification and Control (ICMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIC.2018.8529912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2018.8529912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无人机光电平台控制系统的设计已经被广泛研究了几十年。它的一个关键目标是在保持对目标的视线跟踪的同时隔离无人机的身体运动。受蜻蜓头部旋转控制的启发,提出了一种新颖的逆内模前馈控制方案。该控制器的原理有两个方面:1)建立光电平台动力学集成模型,结合无人机机体运动诱导扰动模型作为内模型,2)将系统输出的偏差作为内模型的期望输出。此外,内部模型输入由一个改进的未知输入观测器(UIO)来求解。最后通过对解出的输入进行前馈控制。数值仿真结果表明了该控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-Inspired Inverse Internal Model Feedforward Control for UAV Photoelectric Platform
The design of UAV photoelectric platform control system has been widely investigated for decades. One of its key aim is to isolate the UAV body motion while keep the line of sight (LOS) tracking the target. Inspired by the head rotation control of dragonfly, this paper presents a novel inverse internal model feedforward control scheme. The principle of this controller is twofold: 1) an integrated model of the photoelectric platform dynamics combined with the UAV body motion induced disturbance model is established as the internal model, 2) The deviation of the system output is taken as the expected output of the internal model. Furthermore, the internal model input is solved by a modified unknown input observer (UIO). Finally the control is completed by the feedforward of solved input. The numerical simulation shows the effectiveness of the controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信