被动声呐系统中基于lstm的自编码器分层集成新颖性检测

Eduardo Sperle Honorato, J. B. O. S. Filho, Victor Hugo da Silva Muniz
{"title":"被动声呐系统中基于lstm的自编码器分层集成新颖性检测","authors":"Eduardo Sperle Honorato, J. B. O. S. Filho, Victor Hugo da Silva Muniz","doi":"10.1109/LA-CCI48322.2021.9769821","DOIUrl":null,"url":null,"abstract":"Sonar operators represent a vital workforce for identifying potential threats to submarines (referred to as contacts) by analysing underwater acoustic signatures acquired by their passive sonar systems. Automatic contact classification models may alleviate the sonar operator task but require additional tools for identifying any class of contact not considered during the system development. This paper proposes a hierarchical detector of unknown contact classes for passive sonar based on modelling signal spectra using Long Short-Term Memory Autoencoders networks. Considering the radiated noise of 28 ships belonging to 8 classes acquired in the Brazilian Navy acoustic range, the system achieved an expressive average value for the area under the detection operation curve (0.946) in a simulated novelty detection scenario involving five known and three unknown classes, surpassing the state-of-the-art.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hierarchical Ensemble of LSTM-based Autoencoders for Novelty Detection in Passive Sonar Systems\",\"authors\":\"Eduardo Sperle Honorato, J. B. O. S. Filho, Victor Hugo da Silva Muniz\",\"doi\":\"10.1109/LA-CCI48322.2021.9769821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sonar operators represent a vital workforce for identifying potential threats to submarines (referred to as contacts) by analysing underwater acoustic signatures acquired by their passive sonar systems. Automatic contact classification models may alleviate the sonar operator task but require additional tools for identifying any class of contact not considered during the system development. This paper proposes a hierarchical detector of unknown contact classes for passive sonar based on modelling signal spectra using Long Short-Term Memory Autoencoders networks. Considering the radiated noise of 28 ships belonging to 8 classes acquired in the Brazilian Navy acoustic range, the system achieved an expressive average value for the area under the detection operation curve (0.946) in a simulated novelty detection scenario involving five known and three unknown classes, surpassing the state-of-the-art.\",\"PeriodicalId\":431041,\"journal\":{\"name\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-CCI48322.2021.9769821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

声纳操作员是通过分析被动声纳系统获得的水声特征来识别潜艇潜在威胁(称为接触)的重要劳动力。自动触点分类模型可以减轻声纳操作员的任务,但需要额外的工具来识别系统开发过程中未考虑的任何触点类别。本文提出了一种基于长短期记忆自编码器网络信号谱建模的被动声呐未知接触类别分层检测器。考虑巴西海军声学范围内获取的8类28艘舰船的辐射噪声,在涉及5个已知和3个未知类别的模拟新颖性检测场景中,该系统实现了探测操作曲线下面积的表达平均值(0.946),超过了最先进的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hierarchical Ensemble of LSTM-based Autoencoders for Novelty Detection in Passive Sonar Systems
Sonar operators represent a vital workforce for identifying potential threats to submarines (referred to as contacts) by analysing underwater acoustic signatures acquired by their passive sonar systems. Automatic contact classification models may alleviate the sonar operator task but require additional tools for identifying any class of contact not considered during the system development. This paper proposes a hierarchical detector of unknown contact classes for passive sonar based on modelling signal spectra using Long Short-Term Memory Autoencoders networks. Considering the radiated noise of 28 ships belonging to 8 classes acquired in the Brazilian Navy acoustic range, the system achieved an expressive average value for the area under the detection operation curve (0.946) in a simulated novelty detection scenario involving five known and three unknown classes, surpassing the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信