目标部分吸收和随机重置的窄捕获问题

P. Bressloff, Ryan D. Schumm
{"title":"目标部分吸收和随机重置的窄捕获问题","authors":"P. Bressloff, Ryan D. Schumm","doi":"10.1137/21m1449580","DOIUrl":null,"url":null,"abstract":"We consider a particle undergoing diffusion with stochastic resetting in a bounded domain $\\calU\\subset \\R^d$ for $d=2,3$. The domain is perforated by a set of partially absorbing targets within which the particle may be absorbed at a rate $\\kappa$. Each target is assumed to be much smaller than $|\\calU|$, which allows us to use asymptotic and Green's function methods to solve the diffusion equation in Laplace space. In particular, we construct an inner solution within the interior and local exterior of each target, and match it with an outer solution in the bulk of $\\calU$. This yields an asymptotic expansion of the Laplace transformed flux into each target in powers of $\\nu=-1/\\ln \\epsilon$ ($d=2$) and $\\epsilon$ ($d=3$), respectively, where $\\epsilon$ is the non-dimensionalized target size. The fluxes determine how the mean first-passage time to absorption depends on the reaction rate $\\kappa$ and the resetting rate $r$. For a range of parameter values, the MFPT is a unimodal function of $r$, with a minimum at an optimal resetting rate $r_{\\rm opt}$ that depends on $\\kappa$ and the target configuration.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Narrow Capture Problem with Partially Absorbing Targets and Stochastic Resetting\",\"authors\":\"P. Bressloff, Ryan D. Schumm\",\"doi\":\"10.1137/21m1449580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a particle undergoing diffusion with stochastic resetting in a bounded domain $\\\\calU\\\\subset \\\\R^d$ for $d=2,3$. The domain is perforated by a set of partially absorbing targets within which the particle may be absorbed at a rate $\\\\kappa$. Each target is assumed to be much smaller than $|\\\\calU|$, which allows us to use asymptotic and Green's function methods to solve the diffusion equation in Laplace space. In particular, we construct an inner solution within the interior and local exterior of each target, and match it with an outer solution in the bulk of $\\\\calU$. This yields an asymptotic expansion of the Laplace transformed flux into each target in powers of $\\\\nu=-1/\\\\ln \\\\epsilon$ ($d=2$) and $\\\\epsilon$ ($d=3$), respectively, where $\\\\epsilon$ is the non-dimensionalized target size. The fluxes determine how the mean first-passage time to absorption depends on the reaction rate $\\\\kappa$ and the resetting rate $r$. For a range of parameter values, the MFPT is a unimodal function of $r$, with a minimum at an optimal resetting rate $r_{\\\\rm opt}$ that depends on $\\\\kappa$ and the target configuration.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1449580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1449580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们考虑一个粒子在有界区域内进行随机重置扩散 $\calU\subset \R^d$ 为了 $d=2,3$. 所述区域由一组部分吸收的靶穿孔,在所述靶内粒子可以一定速率被吸收 $\kappa$. 假设每个目标都比 $|\calU|$,这使得我们可以使用渐近和格林函数方法来求解拉普拉斯空间中的扩散方程。特别是,我们在每个目标的内部和局部外部构造一个内部解,并将其与大块的外部解进行匹配 $\calU$. 这就得到了拉普拉斯变换通量在每个目标上的幂的渐近展开式 $\nu=-1/\ln \epsilon$ ($d=2$)及 $\epsilon$ ($d=3$),分别为 $\epsilon$ 是未量纲化的目标尺寸。通量决定了到吸收的平均首次通过时间如何取决于反应速率 $\kappa$ 和重置速率 $r$. 对于一个参数值范围,MFPT是的单峰函数 $r$,最小值为最佳重置速率 $r_{\rm opt}$ 这取决于 $\kappa$ 和目标构型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Narrow Capture Problem with Partially Absorbing Targets and Stochastic Resetting
We consider a particle undergoing diffusion with stochastic resetting in a bounded domain $\calU\subset \R^d$ for $d=2,3$. The domain is perforated by a set of partially absorbing targets within which the particle may be absorbed at a rate $\kappa$. Each target is assumed to be much smaller than $|\calU|$, which allows us to use asymptotic and Green's function methods to solve the diffusion equation in Laplace space. In particular, we construct an inner solution within the interior and local exterior of each target, and match it with an outer solution in the bulk of $\calU$. This yields an asymptotic expansion of the Laplace transformed flux into each target in powers of $\nu=-1/\ln \epsilon$ ($d=2$) and $\epsilon$ ($d=3$), respectively, where $\epsilon$ is the non-dimensionalized target size. The fluxes determine how the mean first-passage time to absorption depends on the reaction rate $\kappa$ and the resetting rate $r$. For a range of parameter values, the MFPT is a unimodal function of $r$, with a minimum at an optimal resetting rate $r_{\rm opt}$ that depends on $\kappa$ and the target configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信