室内外图像分类

M. Szummer, Rosalind W. Picard
{"title":"室内外图像分类","authors":"M. Szummer, Rosalind W. Picard","doi":"10.1109/CAIVD.1998.646032","DOIUrl":null,"url":null,"abstract":"We show how high-level scene properties can be inferred from classification of low-level image features, specifically for the indoor-outdoor scene retrieval problem. We systematically studied the features of: histograms in the Ohta color space; multiresolution, simultaneous autoregressive model parameters; and coefficients of a shift-invariant DCT. We demonstrate that performance is improved by computing features on subblocks, classifying these subblocks, and then combining these results in a way reminiscent of stacking. State of the art single-feature methods are shown to result in about 75-86% performance, while the new method results in 90.3% correct classification, when evaluated on a diverse database of over 1300 consumer images provided by Kodak.","PeriodicalId":360087,"journal":{"name":"Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"785","resultStr":"{\"title\":\"Indoor-outdoor image classification\",\"authors\":\"M. Szummer, Rosalind W. Picard\",\"doi\":\"10.1109/CAIVD.1998.646032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how high-level scene properties can be inferred from classification of low-level image features, specifically for the indoor-outdoor scene retrieval problem. We systematically studied the features of: histograms in the Ohta color space; multiresolution, simultaneous autoregressive model parameters; and coefficients of a shift-invariant DCT. We demonstrate that performance is improved by computing features on subblocks, classifying these subblocks, and then combining these results in a way reminiscent of stacking. State of the art single-feature methods are shown to result in about 75-86% performance, while the new method results in 90.3% correct classification, when evaluated on a diverse database of over 1300 consumer images provided by Kodak.\",\"PeriodicalId\":360087,\"journal\":{\"name\":\"Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"785\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIVD.1998.646032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIVD.1998.646032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 785

摘要

我们展示了如何从低级图像特征的分类中推断出高级场景属性,特别是针对室内外场景检索问题。我们系统地研究了Ohta颜色空间中直方图的特征;多分辨率、同步自回归模型参数;和平移不变DCT的系数。我们证明,通过计算子块上的特征,对这些子块进行分类,然后以一种让人想起堆叠的方式组合这些结果,可以提高性能。最先进的单一特征方法显示出大约75-86%的性能,而新方法的分类正确率为90.3%,当在柯达提供的超过1300张消费者图像的不同数据库中进行评估时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indoor-outdoor image classification
We show how high-level scene properties can be inferred from classification of low-level image features, specifically for the indoor-outdoor scene retrieval problem. We systematically studied the features of: histograms in the Ohta color space; multiresolution, simultaneous autoregressive model parameters; and coefficients of a shift-invariant DCT. We demonstrate that performance is improved by computing features on subblocks, classifying these subblocks, and then combining these results in a way reminiscent of stacking. State of the art single-feature methods are shown to result in about 75-86% performance, while the new method results in 90.3% correct classification, when evaluated on a diverse database of over 1300 consumer images provided by Kodak.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信