群体推荐的自监督群图协同过滤

Kang Li, Changdong Wang, J. Lai, Huaqiang Yuan
{"title":"群体推荐的自监督群图协同过滤","authors":"Kang Li, Changdong Wang, J. Lai, Huaqiang Yuan","doi":"10.1145/3539597.3570400","DOIUrl":null,"url":null,"abstract":"Nowadays, it is more and more convenient for people to participate in group activities. Therefore, providing some recommendations to groups of individuals is indispensable. Group recommendation is the task of suggesting items or events for a group of users in social networks or online communities. In this work, we study group recommendation in a particular scenario, namely occasional group recommendation, which has few or no historical directly interacted items. Existing group recommendation methods mostly adopt attention-based preference aggregation strategies to capture group preferences. However, these models either ignore the complex high-order interactions between groups, users and items or greatly reduce the efficiency by introducing complex data structures. Moreover, occasional group recommendation suffers from the problem of data sparsity due to the lack of historical group-item interactions. In this work, we focus on addressing the aforementioned challenges and propose a novel group recommendation model called Self-Supervised Group Graph Collaborative Filtering (SGGCF). The goal of the model is capturing the high-order interactions between users, items and groups and alleviating the data sparsity issue in an efficient way. First, we explicitly model the complex relationships as a unified user-centered heterogeneous graph and devise a base group recommendation model. Second, we explore self-supervised learning on the graph with two kinds of contrastive learning module to capture the implicit relations between groups and items. At last, we treat the proposed contrastive learning loss as supplementary and apply a multi-task strategy to jointly train the BPR loss and the proposed contrastive learning loss. We conduct extensive experiments on three real-world datasets, and the experimental results demonstrate the superiority of our proposed model in comparison to the state-of-the-art baselines.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Self-Supervised Group Graph Collaborative Filtering for Group Recommendation\",\"authors\":\"Kang Li, Changdong Wang, J. Lai, Huaqiang Yuan\",\"doi\":\"10.1145/3539597.3570400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, it is more and more convenient for people to participate in group activities. Therefore, providing some recommendations to groups of individuals is indispensable. Group recommendation is the task of suggesting items or events for a group of users in social networks or online communities. In this work, we study group recommendation in a particular scenario, namely occasional group recommendation, which has few or no historical directly interacted items. Existing group recommendation methods mostly adopt attention-based preference aggregation strategies to capture group preferences. However, these models either ignore the complex high-order interactions between groups, users and items or greatly reduce the efficiency by introducing complex data structures. Moreover, occasional group recommendation suffers from the problem of data sparsity due to the lack of historical group-item interactions. In this work, we focus on addressing the aforementioned challenges and propose a novel group recommendation model called Self-Supervised Group Graph Collaborative Filtering (SGGCF). The goal of the model is capturing the high-order interactions between users, items and groups and alleviating the data sparsity issue in an efficient way. First, we explicitly model the complex relationships as a unified user-centered heterogeneous graph and devise a base group recommendation model. Second, we explore self-supervised learning on the graph with two kinds of contrastive learning module to capture the implicit relations between groups and items. At last, we treat the proposed contrastive learning loss as supplementary and apply a multi-task strategy to jointly train the BPR loss and the proposed contrastive learning loss. We conduct extensive experiments on three real-world datasets, and the experimental results demonstrate the superiority of our proposed model in comparison to the state-of-the-art baselines.\",\"PeriodicalId\":227804,\"journal\":{\"name\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539597.3570400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3570400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

如今,人们参加团体活动越来越方便了。因此,为个人群体提供一些建议是必不可少的。群体推荐是指在社交网络或在线社区中为一组用户推荐项目或事件。在这项工作中,我们研究了特定场景下的群体推荐,即偶尔的群体推荐,这种推荐很少或没有历史直接交互项。现有的群体推荐方法大多采用基于注意力的偏好聚合策略来捕捉群体偏好。然而,这些模型要么忽略了组、用户和项目之间复杂的高阶交互,要么通过引入复杂的数据结构大大降低了效率。此外,由于缺乏历史组项交互,偶尔的组推荐存在数据稀疏性问题。在这项工作中,我们专注于解决上述挑战,并提出了一种新的群体推荐模型,称为自监督群体图协同过滤(SGGCF)。该模型的目标是捕获用户、项目和组之间的高阶交互,并以有效的方式缓解数据稀疏性问题。首先,我们将复杂关系明确建模为统一的以用户为中心的异构图,并设计了一个基础组推荐模型。其次,我们利用两种对比学习模块探索图上的自监督学习,以捕捉组与项之间的内隐关系。最后,我们将提出的对比学习损失作为补充,采用多任务策略对BPR损失和提出的对比学习损失进行联合训练。我们在三个真实世界的数据集上进行了广泛的实验,实验结果表明,与最先进的基线相比,我们提出的模型具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Supervised Group Graph Collaborative Filtering for Group Recommendation
Nowadays, it is more and more convenient for people to participate in group activities. Therefore, providing some recommendations to groups of individuals is indispensable. Group recommendation is the task of suggesting items or events for a group of users in social networks or online communities. In this work, we study group recommendation in a particular scenario, namely occasional group recommendation, which has few or no historical directly interacted items. Existing group recommendation methods mostly adopt attention-based preference aggregation strategies to capture group preferences. However, these models either ignore the complex high-order interactions between groups, users and items or greatly reduce the efficiency by introducing complex data structures. Moreover, occasional group recommendation suffers from the problem of data sparsity due to the lack of historical group-item interactions. In this work, we focus on addressing the aforementioned challenges and propose a novel group recommendation model called Self-Supervised Group Graph Collaborative Filtering (SGGCF). The goal of the model is capturing the high-order interactions between users, items and groups and alleviating the data sparsity issue in an efficient way. First, we explicitly model the complex relationships as a unified user-centered heterogeneous graph and devise a base group recommendation model. Second, we explore self-supervised learning on the graph with two kinds of contrastive learning module to capture the implicit relations between groups and items. At last, we treat the proposed contrastive learning loss as supplementary and apply a multi-task strategy to jointly train the BPR loss and the proposed contrastive learning loss. We conduct extensive experiments on three real-world datasets, and the experimental results demonstrate the superiority of our proposed model in comparison to the state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信