多源协同网状网络中的综合节点选择与功率分配

Kianoush Hosseini, R. Adve
{"title":"多源协同网状网络中的综合节点选择与功率分配","authors":"Kianoush Hosseini, R. Adve","doi":"10.1109/CISS.2010.5464924","DOIUrl":null,"url":null,"abstract":"This paper considers resource allocation with relay selection in a multi-source multi-destination mesh network wherein dedicated relay nodes use the decode-and-forward (DF) protocol. The key difference from previous work is that we consider resource allocation across the source-relay, relay-destination, and source-destination channels in a multi-source network. The solution to the related optimization problem simultaneously solves for relay selection, power allocation, and the cooperation strategy (direct transmission, if optimal, is a valid solution). Since the jointly optimal solution is of exponential complexity, we introduce a set of time-sharing factors and relax the selection constraint, resulting in an upper bound to the true solution. Imposing selection leads to a feasible, but tight, lower bound on the optimal solution. Second, we propose a decentralized selection and power allocation scheme. Simulation results show that the performance of the decentralized selection scheme almost exactly tracks that of the upper bound for both the max-sum and max-min rate metrics while offerring computational benefits.","PeriodicalId":118872,"journal":{"name":"2010 44th Annual Conference on Information Sciences and Systems (CISS)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Comprehensive node selection and power allocation in multi-source cooperative mesh networks\",\"authors\":\"Kianoush Hosseini, R. Adve\",\"doi\":\"10.1109/CISS.2010.5464924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers resource allocation with relay selection in a multi-source multi-destination mesh network wherein dedicated relay nodes use the decode-and-forward (DF) protocol. The key difference from previous work is that we consider resource allocation across the source-relay, relay-destination, and source-destination channels in a multi-source network. The solution to the related optimization problem simultaneously solves for relay selection, power allocation, and the cooperation strategy (direct transmission, if optimal, is a valid solution). Since the jointly optimal solution is of exponential complexity, we introduce a set of time-sharing factors and relax the selection constraint, resulting in an upper bound to the true solution. Imposing selection leads to a feasible, but tight, lower bound on the optimal solution. Second, we propose a decentralized selection and power allocation scheme. Simulation results show that the performance of the decentralized selection scheme almost exactly tracks that of the upper bound for both the max-sum and max-min rate metrics while offerring computational benefits.\",\"PeriodicalId\":118872,\"journal\":{\"name\":\"2010 44th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 44th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2010.5464924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 44th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2010.5464924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文考虑了多源多目标网状网络中中继选择的资源分配问题,其中专用中继节点使用解码转发(DF)协议。与先前工作的关键区别在于,我们考虑了多源网络中源-中继、中继-目的地和源-目的地通道之间的资源分配。相关优化问题的解同时解决了中继选择、功率分配和合作策略(直接传输最优为有效解)。由于联合最优解具有指数复杂度,我们引入了一组共享因子并放宽了选择约束,从而得到了真解的上界。施加选择会导致最优解的可行但严格的下界。其次,我们提出了一个分散的选择和权力分配方案。仿真结果表明,分散选择方案的性能几乎完全跟踪最大和和最大最小速率指标的上界,同时提供计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive node selection and power allocation in multi-source cooperative mesh networks
This paper considers resource allocation with relay selection in a multi-source multi-destination mesh network wherein dedicated relay nodes use the decode-and-forward (DF) protocol. The key difference from previous work is that we consider resource allocation across the source-relay, relay-destination, and source-destination channels in a multi-source network. The solution to the related optimization problem simultaneously solves for relay selection, power allocation, and the cooperation strategy (direct transmission, if optimal, is a valid solution). Since the jointly optimal solution is of exponential complexity, we introduce a set of time-sharing factors and relax the selection constraint, resulting in an upper bound to the true solution. Imposing selection leads to a feasible, but tight, lower bound on the optimal solution. Second, we propose a decentralized selection and power allocation scheme. Simulation results show that the performance of the decentralized selection scheme almost exactly tracks that of the upper bound for both the max-sum and max-min rate metrics while offerring computational benefits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信