基于i- k均值和多分辨率PLA变换的时间序列聚类

Vuong Ba Thinh, D. T. Anh
{"title":"基于i- k均值和多分辨率PLA变换的时间序列聚类","authors":"Vuong Ba Thinh, D. T. Anh","doi":"10.1109/rivf.2012.6169835","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an approach using I-k-Means algorithm combined with kd-tree for clustering of time series data transformed by the multiresolution dimensionality reduction method, MPLA. Taking advantage of the multiresolution property of MPLA representation, we can use an anytime clustering algorithm such as the I-k-Means, a popular partitioning clustering algorithm for time series. Our approach also uses kd-tree to resolve the dilemma associated with the choices of initial centroids and significantly improve the execution time and clustering quality. Our experiments show that our approach performs better than k-means and classical I-k-Means in terms of clustering quality and running time.","PeriodicalId":115212,"journal":{"name":"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time Series Clustering Based on I-k-Means and Multi-Resolution PLA Transform\",\"authors\":\"Vuong Ba Thinh, D. T. Anh\",\"doi\":\"10.1109/rivf.2012.6169835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce an approach using I-k-Means algorithm combined with kd-tree for clustering of time series data transformed by the multiresolution dimensionality reduction method, MPLA. Taking advantage of the multiresolution property of MPLA representation, we can use an anytime clustering algorithm such as the I-k-Means, a popular partitioning clustering algorithm for time series. Our approach also uses kd-tree to resolve the dilemma associated with the choices of initial centroids and significantly improve the execution time and clustering quality. Our experiments show that our approach performs better than k-means and classical I-k-Means in terms of clustering quality and running time.\",\"PeriodicalId\":115212,\"journal\":{\"name\":\"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/rivf.2012.6169835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rivf.2012.6169835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种将I-k-Means算法与kd-tree相结合的方法,用于多分辨率降维方法(MPLA)变换后的时间序列数据的聚类。利用MPLA表示的多分辨率特性,我们可以使用任意时间聚类算法,如常用的时间序列分区聚类算法I-k-Means。我们的方法还使用kd-tree来解决与初始质心选择相关的困境,并显着提高了执行时间和聚类质量。我们的实验表明,我们的方法在聚类质量和运行时间方面优于k-means和经典的I-k-Means。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Series Clustering Based on I-k-Means and Multi-Resolution PLA Transform
In this paper, we introduce an approach using I-k-Means algorithm combined with kd-tree for clustering of time series data transformed by the multiresolution dimensionality reduction method, MPLA. Taking advantage of the multiresolution property of MPLA representation, we can use an anytime clustering algorithm such as the I-k-Means, a popular partitioning clustering algorithm for time series. Our approach also uses kd-tree to resolve the dilemma associated with the choices of initial centroids and significantly improve the execution time and clustering quality. Our experiments show that our approach performs better than k-means and classical I-k-Means in terms of clustering quality and running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信