张量的Pareto特征值包含区间

Yang Xu, Zhenghai Huang
{"title":"张量的Pareto特征值包含区间","authors":"Yang Xu, Zhenghai Huang","doi":"10.3934/jimo.2022035","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>A Pareto eigenvalue of a tensor <inline-formula><tex-math id=\"M1\">\\begin{document}$ {\\mathcal A} $\\end{document}</tex-math></inline-formula> of order <inline-formula><tex-math id=\"M2\">\\begin{document}$ m $\\end{document}</tex-math></inline-formula> and dimension <inline-formula><tex-math id=\"M3\">\\begin{document}$ n $\\end{document}</tex-math></inline-formula> is a real number <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\lambda $\\end{document}</tex-math></inline-formula> for which the complementarity problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\mathbf{0}\\leq {\\mathbf x} \\bot (\\lambda{\\mathcal E}{\\mathbf x}^{m-1}- {\\mathcal A}{\\mathbf x}^{m-1}) \\geq \\mathbf{0} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>admits a nonzero solution <inline-formula><tex-math id=\"M5\">\\begin{document}$ {\\mathbf x}\\in \\mathbb{R}^n $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M6\">\\begin{document}$ {\\mathcal E} $\\end{document}</tex-math></inline-formula> is an identity tensor. In this paper, we investigate some basic properties of Pareto eigenvalues, including an equivalent condition for the existence of strict Pareto eigenvalues and the nonnegative conditions of Pareto eigenvalues. Then we focus on the estimation of the bounds of Pareto eigenvalues. Specifically, we propose several Pareto eigenvalue inclusion intervals, and discuss the relationships among them and the known result, which demonstrate that the inclusion intervals obtained are tighter than the known one. Finally, as an application of an achieved inclusion intervals, we propose a sufficient condition for judging that a tensor is strictly copositive.</p>","PeriodicalId":347719,"journal":{"name":"Journal of Industrial &amp; Management Optimization","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pareto eigenvalue inclusion intervals for tensors\",\"authors\":\"Yang Xu, Zhenghai Huang\",\"doi\":\"10.3934/jimo.2022035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>A Pareto eigenvalue of a tensor <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ {\\\\mathcal A} $\\\\end{document}</tex-math></inline-formula> of order <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ m $\\\\end{document}</tex-math></inline-formula> and dimension <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ n $\\\\end{document}</tex-math></inline-formula> is a real number <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\lambda $\\\\end{document}</tex-math></inline-formula> for which the complementarity problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\mathbf{0}\\\\leq {\\\\mathbf x} \\\\bot (\\\\lambda{\\\\mathcal E}{\\\\mathbf x}^{m-1}- {\\\\mathcal A}{\\\\mathbf x}^{m-1}) \\\\geq \\\\mathbf{0} $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>admits a nonzero solution <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ {\\\\mathbf x}\\\\in \\\\mathbb{R}^n $\\\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ {\\\\mathcal E} $\\\\end{document}</tex-math></inline-formula> is an identity tensor. In this paper, we investigate some basic properties of Pareto eigenvalues, including an equivalent condition for the existence of strict Pareto eigenvalues and the nonnegative conditions of Pareto eigenvalues. Then we focus on the estimation of the bounds of Pareto eigenvalues. Specifically, we propose several Pareto eigenvalue inclusion intervals, and discuss the relationships among them and the known result, which demonstrate that the inclusion intervals obtained are tighter than the known one. Finally, as an application of an achieved inclusion intervals, we propose a sufficient condition for judging that a tensor is strictly copositive.</p>\",\"PeriodicalId\":347719,\"journal\":{\"name\":\"Journal of Industrial &amp; Management Optimization\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial &amp; Management Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jimo.2022035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial &amp; Management Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jimo.2022035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

A Pareto eigenvalue of a tensor \begin{document}$ {\mathcal A} $\end{document} of order \begin{document}$ m $\end{document} and dimension \begin{document}$ n $\end{document} is a real number \begin{document}$ \lambda $\end{document} for which the complementarity problem \begin{document}$ \mathbf{0}\leq {\mathbf x} \bot (\lambda{\mathcal E}{\mathbf x}^{m-1}- {\mathcal A}{\mathbf x}^{m-1}) \geq \mathbf{0} $\end{document} admits a nonzero solution \begin{document}$ {\mathbf x}\in \mathbb{R}^n $\end{document}, where \begin{document}$ {\mathcal E} $\end{document} is an identity tensor. In this paper, we investigate some basic properties of Pareto eigenvalues, including an equivalent condition for the existence of strict Pareto eigenvalues and the nonnegative conditions of Pareto eigenvalues. Then we focus on the estimation of the bounds of Pareto eigenvalues. Specifically, we propose several Pareto eigenvalue inclusion intervals, and discuss the relationships among them and the known result, which demonstrate that the inclusion intervals obtained are tighter than the known one. Finally, as an application of an achieved inclusion intervals, we propose a sufficient condition for judging that a tensor is strictly copositive.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pareto eigenvalue inclusion intervals for tensors

A Pareto eigenvalue of a tensor \begin{document}$ {\mathcal A} $\end{document} of order \begin{document}$ m $\end{document} and dimension \begin{document}$ n $\end{document} is a real number \begin{document}$ \lambda $\end{document} for which the complementarity problem

admits a nonzero solution \begin{document}$ {\mathbf x}\in \mathbb{R}^n $\end{document}, where \begin{document}$ {\mathcal E} $\end{document} is an identity tensor. In this paper, we investigate some basic properties of Pareto eigenvalues, including an equivalent condition for the existence of strict Pareto eigenvalues and the nonnegative conditions of Pareto eigenvalues. Then we focus on the estimation of the bounds of Pareto eigenvalues. Specifically, we propose several Pareto eigenvalue inclusion intervals, and discuss the relationships among them and the known result, which demonstrate that the inclusion intervals obtained are tighter than the known one. Finally, as an application of an achieved inclusion intervals, we propose a sufficient condition for judging that a tensor is strictly copositive.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信