{"title":"高动态驾驶机动的IMM目标跟踪","authors":"N. Kaempchen, K. Weiß, M. Schaefer, K. Dietmayer","doi":"10.1109/IVS.2004.1336491","DOIUrl":null,"url":null,"abstract":"Classical object tracking approaches use a Kalman-filter with a single dynamic model which is therefore optimised to a single driving maneuver. In contrast the interacting multiple model (IMM) filter allows for several parallel models which are combined to a weighted estimate. Choosing models for different driving modes, such as constant speed, acceleration and strong acceleration changes, the object state estimation can be optimised for highly dynamic driving maneuvers. The paper describes the analysis of Stop&Go situations and the systematic parametrisation of the IMM method based on these statistics. The evaluation of the IMM approach is presented based on real sensor measurements of laser scanners, a radar and a video image processing unit.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":"{\"title\":\"IMM object tracking for high dynamic driving maneuvers\",\"authors\":\"N. Kaempchen, K. Weiß, M. Schaefer, K. Dietmayer\",\"doi\":\"10.1109/IVS.2004.1336491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical object tracking approaches use a Kalman-filter with a single dynamic model which is therefore optimised to a single driving maneuver. In contrast the interacting multiple model (IMM) filter allows for several parallel models which are combined to a weighted estimate. Choosing models for different driving modes, such as constant speed, acceleration and strong acceleration changes, the object state estimation can be optimised for highly dynamic driving maneuvers. The paper describes the analysis of Stop&Go situations and the systematic parametrisation of the IMM method based on these statistics. The evaluation of the IMM approach is presented based on real sensor measurements of laser scanners, a radar and a video image processing unit.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
IMM object tracking for high dynamic driving maneuvers
Classical object tracking approaches use a Kalman-filter with a single dynamic model which is therefore optimised to a single driving maneuver. In contrast the interacting multiple model (IMM) filter allows for several parallel models which are combined to a weighted estimate. Choosing models for different driving modes, such as constant speed, acceleration and strong acceleration changes, the object state estimation can be optimised for highly dynamic driving maneuvers. The paper describes the analysis of Stop&Go situations and the systematic parametrisation of the IMM method based on these statistics. The evaluation of the IMM approach is presented based on real sensor measurements of laser scanners, a radar and a video image processing unit.