使用线性投影重建的自校准

J. Ha, Jin-Young Yang, Kuk-jin Yoon, In-So Kweon
{"title":"使用线性投影重建的自校准","authors":"J. Ha, Jin-Young Yang, Kuk-jin Yoon, In-So Kweon","doi":"10.1109/ROBOT.2000.844161","DOIUrl":null,"url":null,"abstract":"Self-calibration algorithms that use only the information in the image have been actively researched. However, most algorithms require bundle adjustment in the projective reconstruction or in the nonlinear minimization. We propose a practical self-calibration algorithm that only requires a linear projective reconstruction. We overcome the sensitivity of the algorithm due to image noises by adding another constraint on the principal point. Also, we propose a variant of linear auto-calibration algorithm which uses the similar assumption of the work of Pollefeys et al. (1998), based on the property of the absolute quadric. Experimental results using real and synthetic images demonstrate the feasibility of the proposed algorithm.","PeriodicalId":286422,"journal":{"name":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Self-calibration using the linear projective reconstruction\",\"authors\":\"J. Ha, Jin-Young Yang, Kuk-jin Yoon, In-So Kweon\",\"doi\":\"10.1109/ROBOT.2000.844161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-calibration algorithms that use only the information in the image have been actively researched. However, most algorithms require bundle adjustment in the projective reconstruction or in the nonlinear minimization. We propose a practical self-calibration algorithm that only requires a linear projective reconstruction. We overcome the sensitivity of the algorithm due to image noises by adding another constraint on the principal point. Also, we propose a variant of linear auto-calibration algorithm which uses the similar assumption of the work of Pollefeys et al. (1998), based on the property of the absolute quadric. Experimental results using real and synthetic images demonstrate the feasibility of the proposed algorithm.\",\"PeriodicalId\":286422,\"journal\":{\"name\":\"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2000.844161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2000.844161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

仅利用图像信息的自校准算法已经得到了积极的研究。然而,大多数算法在投影重建或非线性最小化中都需要进行束平差。我们提出了一种实用的自校准算法,该算法只需要线性投影重建。通过在主点上增加另一个约束,克服了算法受图像噪声影响的敏感性。此外,我们还提出了一种线性自校准算法的变体,该算法基于绝对二次函数的性质,使用了Pollefeys等人(1998)工作的类似假设。真实图像和合成图像的实验结果验证了该算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-calibration using the linear projective reconstruction
Self-calibration algorithms that use only the information in the image have been actively researched. However, most algorithms require bundle adjustment in the projective reconstruction or in the nonlinear minimization. We propose a practical self-calibration algorithm that only requires a linear projective reconstruction. We overcome the sensitivity of the algorithm due to image noises by adding another constraint on the principal point. Also, we propose a variant of linear auto-calibration algorithm which uses the similar assumption of the work of Pollefeys et al. (1998), based on the property of the absolute quadric. Experimental results using real and synthetic images demonstrate the feasibility of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信