采用被动安全系统的机动列车与大型道路车辆碰撞时的动载荷评估

M. Sobolevska, D. Horobets
{"title":"采用被动安全系统的机动列车与大型道路车辆碰撞时的动载荷评估","authors":"M. Sobolevska, D. Horobets","doi":"10.15407/itm2022.01.051","DOIUrl":null,"url":null,"abstract":"A topical problem of the home railway transport is motor-car train renewval, speed increase, and safety improvement in accordance with the Ukrainian State Standards DSTU EN 12633 and DSTU EN 15227, which specify the passenger car crashworthiness and passive safety, respectively, in emergency collisions with various obstacles. Relying on the world experience, researchers of the institute of Technical Methanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine developed a passive protection concept for home high-speed passenger trains in emergency collisions according to the DSTU EN 15227 requirements, proposals on the passive propection of a home motor-car train head car, lower- and upper-level honeycomb energy-absorbing devoces (EAD 1 and UL EAD, respectively) for the head car front part, and EAD 2 and EAD 3 low-level devices to be installed in intercar connecteions. The upper- and lower-level protective devices for home motor-car trains were developed based on finite-element simulation results using previous experience in the development of a passive protection device for a high-speed passenger locomotive and the results of a successful crash test of its proptotype. For Scenario 3, which chraracterizes a collision of a reference motor-car train at 110 km/h with a 15 t large road vehicle at a railway crossing, a model of a large deformable obstacle (LDO) was developed in compliance with the DSTU EN 15227 requirements. Finite-element models were developed to determine the force characteristics of interaction between the proposed head car passive protection devices and an LDO. The aim of this paper is to determine dynamic loads on a motor-car train equipped with passive protection devices in its collision with a large road vehicle. Based on a mathematical collision model for identical motor-car trains, a mathematical model was developed for a collision of a reference train with a large road vehicle at a railway crossing (Scenario 3) with account for the determined force characteristics of obstacle ? two EAD 1 low-level devices and obstacle ? two UL EAD upper-level devices interaction and the in-collision work of the head car structure. Dynamic loads on the cars of a reference train with a passive safety system (a head car mass of 80 t and intermediate car masses of 50 t or 64 t) were analyzed for its collision by Scenario 3. Two EAD layouts in the head car front part were studied. It was found that the proposed passive protection of the reference train cars meets the DSTU EN 15227 criteria for Scenario 3 for both EAD layouts and the determined variants of lower- and upper-level EAD use according to the intermediate car masses. The proposed mathematical model of dynamic loads on a passenger train with a passive safety system in its collision with a large road vehicle and the results obtained may be used in designing an up-to-date high-speed motor-car train to the DSTU EN 15227 requirements.","PeriodicalId":287730,"journal":{"name":"Technical mechanics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asessment of dynamic loads on a motor-car train with a passive safety system in its collision with a large road vehicle\",\"authors\":\"M. Sobolevska, D. Horobets\",\"doi\":\"10.15407/itm2022.01.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A topical problem of the home railway transport is motor-car train renewval, speed increase, and safety improvement in accordance with the Ukrainian State Standards DSTU EN 12633 and DSTU EN 15227, which specify the passenger car crashworthiness and passive safety, respectively, in emergency collisions with various obstacles. Relying on the world experience, researchers of the institute of Technical Methanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine developed a passive protection concept for home high-speed passenger trains in emergency collisions according to the DSTU EN 15227 requirements, proposals on the passive propection of a home motor-car train head car, lower- and upper-level honeycomb energy-absorbing devoces (EAD 1 and UL EAD, respectively) for the head car front part, and EAD 2 and EAD 3 low-level devices to be installed in intercar connecteions. The upper- and lower-level protective devices for home motor-car trains were developed based on finite-element simulation results using previous experience in the development of a passive protection device for a high-speed passenger locomotive and the results of a successful crash test of its proptotype. For Scenario 3, which chraracterizes a collision of a reference motor-car train at 110 km/h with a 15 t large road vehicle at a railway crossing, a model of a large deformable obstacle (LDO) was developed in compliance with the DSTU EN 15227 requirements. Finite-element models were developed to determine the force characteristics of interaction between the proposed head car passive protection devices and an LDO. The aim of this paper is to determine dynamic loads on a motor-car train equipped with passive protection devices in its collision with a large road vehicle. Based on a mathematical collision model for identical motor-car trains, a mathematical model was developed for a collision of a reference train with a large road vehicle at a railway crossing (Scenario 3) with account for the determined force characteristics of obstacle ? two EAD 1 low-level devices and obstacle ? two UL EAD upper-level devices interaction and the in-collision work of the head car structure. Dynamic loads on the cars of a reference train with a passive safety system (a head car mass of 80 t and intermediate car masses of 50 t or 64 t) were analyzed for its collision by Scenario 3. Two EAD layouts in the head car front part were studied. It was found that the proposed passive protection of the reference train cars meets the DSTU EN 15227 criteria for Scenario 3 for both EAD layouts and the determined variants of lower- and upper-level EAD use according to the intermediate car masses. The proposed mathematical model of dynamic loads on a passenger train with a passive safety system in its collision with a large road vehicle and the results obtained may be used in designing an up-to-date high-speed motor-car train to the DSTU EN 15227 requirements.\",\"PeriodicalId\":287730,\"journal\":{\"name\":\"Technical mechanics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/itm2022.01.051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/itm2022.01.051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

国内铁路运输的一个热点问题是按照乌克兰国家标准DSTU EN 12633和DSTU EN 15227更新、提高速度和提高安全性,这两个标准分别规定了客车在与各种障碍物紧急碰撞时的耐撞性和被动安全性。乌克兰国家科学院技术力学研究所和乌克兰国家航天局的研究人员借鉴世界经验,根据DSTU EN 15227要求,研制了家庭高速客运列车紧急碰撞被动防护概念,关于家庭机动车辆列车车头车厢被动防护的建议,下、上层蜂窝吸能装置(EAD 1和UL EAD),(分别为头车前部),以及在车际连接处安装的EAD 2和EAD 3低级装置。国内动车组上、下两层防护装置的研制,是根据以往高速客运机车被动防护装置研制的经验和样机碰撞试验的成功结果,在有限元仿真的基础上进行的。在情景3中,一列参考机动列车以110公里/小时的速度与一辆15吨的大型公路车辆在铁路道口相撞,根据DSTU EN 15227的要求,开发了一个大型可变形障碍物(LDO)模型。建立了有限元模型,以确定所提出的头部汽车被动保护装置与LDO之间相互作用的力特性。本文的目的是确定配备被动保护装置的机动列车与大型道路车辆碰撞时的动载荷。基于相同机动车辆列车碰撞的数学模型,建立了参考列车与大型公路车辆在铁路道口(场景3)碰撞的数学模型,并考虑了障碍物的确定力特性?两个EAD 1低电平装置和障碍物?两个UL EAD上层器件的相互作用和在碰撞中工作的头部小车结构。采用情景3分析了采用被动安全系统的参考列车(车头质量为80t,中间车质量为50t或64t)碰撞时车厢的动载荷。研究了头车前部的两种EAD布局。研究发现,参考列车车厢的被动保护方案符合DSTU EN 15227方案3的标准,既适用于EAD布局,也适用于根据中间车厢质量确定的上下级EAD使用变化。所提出的具有被动安全系统的客运列车与大型道路车辆碰撞时动载荷的数学模型及其结果可用于设计符合DSTU EN 15227要求的最新高速机动车辆列车。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asessment of dynamic loads on a motor-car train with a passive safety system in its collision with a large road vehicle
A topical problem of the home railway transport is motor-car train renewval, speed increase, and safety improvement in accordance with the Ukrainian State Standards DSTU EN 12633 and DSTU EN 15227, which specify the passenger car crashworthiness and passive safety, respectively, in emergency collisions with various obstacles. Relying on the world experience, researchers of the institute of Technical Methanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine developed a passive protection concept for home high-speed passenger trains in emergency collisions according to the DSTU EN 15227 requirements, proposals on the passive propection of a home motor-car train head car, lower- and upper-level honeycomb energy-absorbing devoces (EAD 1 and UL EAD, respectively) for the head car front part, and EAD 2 and EAD 3 low-level devices to be installed in intercar connecteions. The upper- and lower-level protective devices for home motor-car trains were developed based on finite-element simulation results using previous experience in the development of a passive protection device for a high-speed passenger locomotive and the results of a successful crash test of its proptotype. For Scenario 3, which chraracterizes a collision of a reference motor-car train at 110 km/h with a 15 t large road vehicle at a railway crossing, a model of a large deformable obstacle (LDO) was developed in compliance with the DSTU EN 15227 requirements. Finite-element models were developed to determine the force characteristics of interaction between the proposed head car passive protection devices and an LDO. The aim of this paper is to determine dynamic loads on a motor-car train equipped with passive protection devices in its collision with a large road vehicle. Based on a mathematical collision model for identical motor-car trains, a mathematical model was developed for a collision of a reference train with a large road vehicle at a railway crossing (Scenario 3) with account for the determined force characteristics of obstacle ? two EAD 1 low-level devices and obstacle ? two UL EAD upper-level devices interaction and the in-collision work of the head car structure. Dynamic loads on the cars of a reference train with a passive safety system (a head car mass of 80 t and intermediate car masses of 50 t or 64 t) were analyzed for its collision by Scenario 3. Two EAD layouts in the head car front part were studied. It was found that the proposed passive protection of the reference train cars meets the DSTU EN 15227 criteria for Scenario 3 for both EAD layouts and the determined variants of lower- and upper-level EAD use according to the intermediate car masses. The proposed mathematical model of dynamic loads on a passenger train with a passive safety system in its collision with a large road vehicle and the results obtained may be used in designing an up-to-date high-speed motor-car train to the DSTU EN 15227 requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信