可视化分析和相似度搜索——科学数据中基于兴趣的相似度搜索

Midhad Blazevic, Lennart B. Sina, Dirk Burkhardt, Melanie Siegel, Kawa Nazemi
{"title":"可视化分析和相似度搜索——科学数据中基于兴趣的相似度搜索","authors":"Midhad Blazevic, Lennart B. Sina, Dirk Burkhardt, Melanie Siegel, Kawa Nazemi","doi":"10.1109/IV53921.2021.00041","DOIUrl":null,"url":null,"abstract":"Visual Analytics enables solving complex analytical tasks by coupling interactive visualizations and machine learning approaches. Besides the analytical reasoning enabled through Visual Analytics, the exploration of data plays an essential role. The exploration process can be supported through similarity-based approaches that enable finding similar data to those annotated in the context of visual exploration. We propose in this paper a process of annotation in the context of exploration that leads to labeled vectors-of-interest and enables finding similar publications based on interest vectors. The generation and labeling of the interest vectors are performed automatically by the Visual Analytics system and lead to finding similar papers and categorizing the annotated papers. With this approach, we provide a categorized similarity search based on an automatically labeled interest matrix in Visual Analytics.","PeriodicalId":380260,"journal":{"name":"2021 25th International Conference Information Visualisation (IV)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Visual Analytics and Similarity Search - Interest-based Similarity Search in Scientific Data\",\"authors\":\"Midhad Blazevic, Lennart B. Sina, Dirk Burkhardt, Melanie Siegel, Kawa Nazemi\",\"doi\":\"10.1109/IV53921.2021.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual Analytics enables solving complex analytical tasks by coupling interactive visualizations and machine learning approaches. Besides the analytical reasoning enabled through Visual Analytics, the exploration of data plays an essential role. The exploration process can be supported through similarity-based approaches that enable finding similar data to those annotated in the context of visual exploration. We propose in this paper a process of annotation in the context of exploration that leads to labeled vectors-of-interest and enables finding similar publications based on interest vectors. The generation and labeling of the interest vectors are performed automatically by the Visual Analytics system and lead to finding similar papers and categorizing the annotated papers. With this approach, we provide a categorized similarity search based on an automatically labeled interest matrix in Visual Analytics.\",\"PeriodicalId\":380260,\"journal\":{\"name\":\"2021 25th International Conference Information Visualisation (IV)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 25th International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV53921.2021.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 25th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV53921.2021.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

可视化分析通过耦合交互式可视化和机器学习方法来解决复杂的分析任务。除了通过可视化分析实现的分析推理之外,对数据的探索也起着至关重要的作用。探索过程可以通过基于相似性的方法来支持,这种方法可以找到与视觉探索上下文中注释的数据相似的数据。我们在本文中提出了一个探索背景下的注释过程,该过程导致标记的兴趣向量,并能够基于兴趣向量找到类似的出版物。兴趣向量的生成和标记由Visual Analytics系统自动执行,并导致查找相似的论文并对注释的论文进行分类。通过这种方法,我们提供了基于Visual Analytics中自动标记的兴趣矩阵的分类相似度搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Analytics and Similarity Search - Interest-based Similarity Search in Scientific Data
Visual Analytics enables solving complex analytical tasks by coupling interactive visualizations and machine learning approaches. Besides the analytical reasoning enabled through Visual Analytics, the exploration of data plays an essential role. The exploration process can be supported through similarity-based approaches that enable finding similar data to those annotated in the context of visual exploration. We propose in this paper a process of annotation in the context of exploration that leads to labeled vectors-of-interest and enables finding similar publications based on interest vectors. The generation and labeling of the interest vectors are performed automatically by the Visual Analytics system and lead to finding similar papers and categorizing the annotated papers. With this approach, we provide a categorized similarity search based on an automatically labeled interest matrix in Visual Analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信