利用活动轮廓模型和偏微分方程进行图像分割

Č. Livada, Hrvoje Leventić, I. Galić
{"title":"利用活动轮廓模型和偏微分方程进行图像分割","authors":"Č. Livada, Hrvoje Leventić, I. Galić","doi":"10.1109/ELMAR.2014.6923348","DOIUrl":null,"url":null,"abstract":"This article displays benefits of image segmentation for purpose of 3D reconstruction. Medical images and in this case CT slices are being reconstructed in 3D space for better medical investigation. It is relatively hard to use raw images for 3D reconstruction, so certain areas are being singled out using active contour models. Partial Differential Equations (PDEs), as non-linear diffusion, are used for image denoising because CT images have large gradiental areas that need to be evened out.","PeriodicalId":424325,"journal":{"name":"Proceedings ELMAR-2014","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image segmentation using active contour models and partial differential equations\",\"authors\":\"Č. Livada, Hrvoje Leventić, I. Galić\",\"doi\":\"10.1109/ELMAR.2014.6923348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article displays benefits of image segmentation for purpose of 3D reconstruction. Medical images and in this case CT slices are being reconstructed in 3D space for better medical investigation. It is relatively hard to use raw images for 3D reconstruction, so certain areas are being singled out using active contour models. Partial Differential Equations (PDEs), as non-linear diffusion, are used for image denoising because CT images have large gradiental areas that need to be evened out.\",\"PeriodicalId\":424325,\"journal\":{\"name\":\"Proceedings ELMAR-2014\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings ELMAR-2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELMAR.2014.6923348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ELMAR-2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR.2014.6923348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了用于三维重建的图像分割的好处。医学图像和CT切片正在三维空间中重建,以便更好地进行医学研究。使用原始图像进行3D重建相对困难,因此使用活动轮廓模型挑选出某些区域。由于CT图像有较大的梯度区域需要均匀化,所以偏微分方程(PDEs)作为非线性扩散,被用于图像去噪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image segmentation using active contour models and partial differential equations
This article displays benefits of image segmentation for purpose of 3D reconstruction. Medical images and in this case CT slices are being reconstructed in 3D space for better medical investigation. It is relatively hard to use raw images for 3D reconstruction, so certain areas are being singled out using active contour models. Partial Differential Equations (PDEs), as non-linear diffusion, are used for image denoising because CT images have large gradiental areas that need to be evened out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信