咬翼和根尖周x线片上牙齿病理和解剖结构的多类别语义分割

James-Andrew R. Sarmiento, Liushifeng Chen, P. Naval
{"title":"咬翼和根尖周x线片上牙齿病理和解剖结构的多类别语义分割","authors":"James-Andrew R. Sarmiento, Liushifeng Chen, P. Naval","doi":"10.23919/MVA57639.2023.10215653","DOIUrl":null,"url":null,"abstract":"Detecting dental problems early can prevent invasive procedures and reduce healthcare costs, but traditional exams may not identify all issues, making radiography essential. However, interpreting X-rays can be time-consuming, subjective, prone to error, and requires specialized knowledge. Automated segmentation methods using AI can improve interpretation and aid in diagnosis and patient education. Our U-Net model, trained on 344 bitewing and periapical X-rays, can identify two pathologies and eight anatomical features. It achieves an overall diagnostic performance of 0.794 and 0.787 in terms of Dice score and sensitivity, respectively, 0.493 and 0.405 for dental caries, and 0.471 and 0.44 for root infections. This successful application of deep learning to dental imaging demonstrates the potential of automated segmentation methods for improving accuracy and efficiency in diagnosing and treating dental disorders.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-class Semantic Segmentation of Tooth Pathologies and Anatomical Structures on Bitewing and Periapical Radiographs\",\"authors\":\"James-Andrew R. Sarmiento, Liushifeng Chen, P. Naval\",\"doi\":\"10.23919/MVA57639.2023.10215653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting dental problems early can prevent invasive procedures and reduce healthcare costs, but traditional exams may not identify all issues, making radiography essential. However, interpreting X-rays can be time-consuming, subjective, prone to error, and requires specialized knowledge. Automated segmentation methods using AI can improve interpretation and aid in diagnosis and patient education. Our U-Net model, trained on 344 bitewing and periapical X-rays, can identify two pathologies and eight anatomical features. It achieves an overall diagnostic performance of 0.794 and 0.787 in terms of Dice score and sensitivity, respectively, 0.493 and 0.405 for dental caries, and 0.471 and 0.44 for root infections. This successful application of deep learning to dental imaging demonstrates the potential of automated segmentation methods for improving accuracy and efficiency in diagnosing and treating dental disorders.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10215653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

早期发现牙齿问题可以防止侵入性手术并降低医疗成本,但传统的检查可能无法识别所有问题,因此放射检查必不可少。然而,解释x射线可能耗时,主观,容易出错,并且需要专业知识。使用人工智能的自动分割方法可以改善解释,并有助于诊断和患者教育。我们的U-Net模型经过344张咬牙和根尖周x光片的训练,可以识别出两种病理和八种解剖特征。在Dice评分和敏感性方面,其总体诊断性能分别为0.794和0.787,对龋齿的诊断性能分别为0.493和0.405,对牙根感染的诊断性能分别为0.471和0.44。深度学习在牙科成像中的成功应用表明,自动分割方法在提高诊断和治疗牙科疾病的准确性和效率方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-class Semantic Segmentation of Tooth Pathologies and Anatomical Structures on Bitewing and Periapical Radiographs
Detecting dental problems early can prevent invasive procedures and reduce healthcare costs, but traditional exams may not identify all issues, making radiography essential. However, interpreting X-rays can be time-consuming, subjective, prone to error, and requires specialized knowledge. Automated segmentation methods using AI can improve interpretation and aid in diagnosis and patient education. Our U-Net model, trained on 344 bitewing and periapical X-rays, can identify two pathologies and eight anatomical features. It achieves an overall diagnostic performance of 0.794 and 0.787 in terms of Dice score and sensitivity, respectively, 0.493 and 0.405 for dental caries, and 0.471 and 0.44 for root infections. This successful application of deep learning to dental imaging demonstrates the potential of automated segmentation methods for improving accuracy and efficiency in diagnosing and treating dental disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信