基于cs的DoA估计稀疏重构的快速实现

Masato Gocho, Yoshiki Takahashi, A. Ozaki
{"title":"基于cs的DoA估计稀疏重构的快速实现","authors":"Masato Gocho, Yoshiki Takahashi, A. Ozaki","doi":"10.1109/EURAD.2015.7346263","DOIUrl":null,"url":null,"abstract":"Sparse vector reconstruction requires a long computation time, because it is based on some iterative computation algorithms, in which an initial dense vector is gradually modified to a sparse vector. To overcome this problem, we proposed a fast implementation technique that is based on the reordering/reuse of results calculated from the zero-elements at each iteration. In addition, we adapted our technique to a GPU (graphics processing unit)-suitable implementation of ℓp-norm minimization, i.e., a CS (compressive/compressed sensing)-based DoA (direction of arrival) estimation algorithm. We found that the proposed implementation with a GPU is up to 47 times faster than the conventional implementation with an 8-threaded CPU.","PeriodicalId":376019,"journal":{"name":"2015 European Radar Conference (EuRAD)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast implementation of sparse reconstruction for CS-based DoA estimation\",\"authors\":\"Masato Gocho, Yoshiki Takahashi, A. Ozaki\",\"doi\":\"10.1109/EURAD.2015.7346263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse vector reconstruction requires a long computation time, because it is based on some iterative computation algorithms, in which an initial dense vector is gradually modified to a sparse vector. To overcome this problem, we proposed a fast implementation technique that is based on the reordering/reuse of results calculated from the zero-elements at each iteration. In addition, we adapted our technique to a GPU (graphics processing unit)-suitable implementation of ℓp-norm minimization, i.e., a CS (compressive/compressed sensing)-based DoA (direction of arrival) estimation algorithm. We found that the proposed implementation with a GPU is up to 47 times faster than the conventional implementation with an 8-threaded CPU.\",\"PeriodicalId\":376019,\"journal\":{\"name\":\"2015 European Radar Conference (EuRAD)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Radar Conference (EuRAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURAD.2015.7346263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Radar Conference (EuRAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURAD.2015.7346263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

稀疏向量重建需要很长的计算时间,因为它是基于一些迭代计算算法,其中一个初始的密集向量逐渐被修改为稀疏向量。为了克服这个问题,我们提出了一种快速实现技术,该技术基于每次迭代时从零元素计算的结果的重新排序/重用。此外,我们将我们的技术适用于GPU(图形处理单元)-适合实现p-范数最小化,即基于CS(压缩/压缩感知)的DoA(到达方向)估计算法。我们发现,使用GPU的拟议实现比使用8线程CPU的传统实现快47倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast implementation of sparse reconstruction for CS-based DoA estimation
Sparse vector reconstruction requires a long computation time, because it is based on some iterative computation algorithms, in which an initial dense vector is gradually modified to a sparse vector. To overcome this problem, we proposed a fast implementation technique that is based on the reordering/reuse of results calculated from the zero-elements at each iteration. In addition, we adapted our technique to a GPU (graphics processing unit)-suitable implementation of ℓp-norm minimization, i.e., a CS (compressive/compressed sensing)-based DoA (direction of arrival) estimation algorithm. We found that the proposed implementation with a GPU is up to 47 times faster than the conventional implementation with an 8-threaded CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信