仔细检查频繁的模式发现性能

Osmar R Zaiane, Mohammad El-Hajj, Yi Li, S. Luk
{"title":"仔细检查频繁的模式发现性能","authors":"Osmar R Zaiane, Mohammad El-Hajj, Yi Li, S. Luk","doi":"10.1109/ICDE.2005.127","DOIUrl":null,"url":null,"abstract":"Benchmarking technical solutions is as important as the solutions themselves. Yet many fields still lack any type of rigorous evaluation. Performance benchmarking has always been an important issue in databases and has played a significant role in the development, deployment and adoption of technologies. To help assessing the myriad algorithms for frequent itemset mining, we built an open framework and testbed to analytically study the performance of different algorithms and their implementations, and contrast their achievements given different data characteristics, different conditions, and different types of patterns to discover and their constraints. This facilitates reporting consistent and reproducible performance results using known conditions.","PeriodicalId":297231,"journal":{"name":"21st International Conference on Data Engineering (ICDE'05)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Scrutinizing frequent pattern discovery performance\",\"authors\":\"Osmar R Zaiane, Mohammad El-Hajj, Yi Li, S. Luk\",\"doi\":\"10.1109/ICDE.2005.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benchmarking technical solutions is as important as the solutions themselves. Yet many fields still lack any type of rigorous evaluation. Performance benchmarking has always been an important issue in databases and has played a significant role in the development, deployment and adoption of technologies. To help assessing the myriad algorithms for frequent itemset mining, we built an open framework and testbed to analytically study the performance of different algorithms and their implementations, and contrast their achievements given different data characteristics, different conditions, and different types of patterns to discover and their constraints. This facilitates reporting consistent and reproducible performance results using known conditions.\",\"PeriodicalId\":297231,\"journal\":{\"name\":\"21st International Conference on Data Engineering (ICDE'05)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Data Engineering (ICDE'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2005.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Data Engineering (ICDE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2005.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

对技术解决方案进行基准测试与解决方案本身一样重要。然而,许多领域仍然缺乏任何形式的严格评估。性能基准测试一直是数据库中的一个重要问题,并且在技术的开发、部署和采用中发挥了重要作用。为了帮助评估频繁项集挖掘的各种算法,我们构建了一个开放的框架和测试平台,分析研究了不同算法及其实现的性能,并在不同的数据特征、不同的条件、不同类型的模式发现及其约束的情况下,对比了它们的成果。这有助于使用已知条件报告一致且可重复的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scrutinizing frequent pattern discovery performance
Benchmarking technical solutions is as important as the solutions themselves. Yet many fields still lack any type of rigorous evaluation. Performance benchmarking has always been an important issue in databases and has played a significant role in the development, deployment and adoption of technologies. To help assessing the myriad algorithms for frequent itemset mining, we built an open framework and testbed to analytically study the performance of different algorithms and their implementations, and contrast their achievements given different data characteristics, different conditions, and different types of patterns to discover and their constraints. This facilitates reporting consistent and reproducible performance results using known conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信