大规模贝叶斯网络的结构学习

Xiang Xu, Qing Liu, Yaping Li, Lin Xiao
{"title":"大规模贝叶斯网络的结构学习","authors":"Xiang Xu, Qing Liu, Yaping Li, Lin Xiao","doi":"10.1109/WISA.2014.35","DOIUrl":null,"url":null,"abstract":"We improve the structure learning approach from several aspects to learn huge Bayesian network and propose network merging methods to get better result. This approach is applied to build mRNA-miRNA-cancer network by using dataset whose samples have both mRNAs and miRNAs expression data. We evaluate the learning approach and compare merging methods through experiments and evaluate the network we have learned. Experiments show that the gene interact relationship and even causal relationship can be revealed to get better understanding of the way they interact.","PeriodicalId":366169,"journal":{"name":"2014 11th Web Information System and Application Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure Learning of Large Scale Bayesian Network\",\"authors\":\"Xiang Xu, Qing Liu, Yaping Li, Lin Xiao\",\"doi\":\"10.1109/WISA.2014.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We improve the structure learning approach from several aspects to learn huge Bayesian network and propose network merging methods to get better result. This approach is applied to build mRNA-miRNA-cancer network by using dataset whose samples have both mRNAs and miRNAs expression data. We evaluate the learning approach and compare merging methods through experiments and evaluate the network we have learned. Experiments show that the gene interact relationship and even causal relationship can be revealed to get better understanding of the way they interact.\",\"PeriodicalId\":366169,\"journal\":{\"name\":\"2014 11th Web Information System and Application Conference\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th Web Information System and Application Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2014.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Web Information System and Application Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2014.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从几个方面改进了结构学习方法来学习巨大的贝叶斯网络,并提出了网络合并方法以获得更好的学习效果。该方法利用样本中同时含有mrna和mirna表达数据的数据集构建mRNA-miRNA-cancer网络。我们通过实验对学习方法和合并方法进行了评价,并对我们学习到的网络进行了评价。实验表明,可以揭示基因的相互作用关系甚至因果关系,从而更好地理解它们的相互作用方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure Learning of Large Scale Bayesian Network
We improve the structure learning approach from several aspects to learn huge Bayesian network and propose network merging methods to get better result. This approach is applied to build mRNA-miRNA-cancer network by using dataset whose samples have both mRNAs and miRNAs expression data. We evaluate the learning approach and compare merging methods through experiments and evaluate the network we have learned. Experiments show that the gene interact relationship and even causal relationship can be revealed to get better understanding of the way they interact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信