多gpu上重叠算子的高效实现

A. Alexandru, M. Lujan, C. Pelissier, B. Gamari, F. Lee
{"title":"多gpu上重叠算子的高效实现","authors":"A. Alexandru, M. Lujan, C. Pelissier, B. Gamari, F. Lee","doi":"10.1109/SAAHPC.2011.13","DOIUrl":null,"url":null,"abstract":"Lattice QCD calculations were one of the first applications to show the potential of GPUs in the area of high performance computing. Our interest is to find ways to effectively use GPUs for lattice calculations using the overlap operator. The large memory footprint of these codes requires the use of multiple GPUs in parallel. In this paper we show the methods we used to implement this operator efficiently. We run our codes both on a GPU cluster and a CPU cluster with similar interconnects. We find that to match performance the CPU cluster requires 20-30 times more CPU cores than GPUs.","PeriodicalId":331604,"journal":{"name":"2011 Symposium on Application Accelerators in High-Performance Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Efficient Implementation of the Overlap Operator on Multi-GPUs\",\"authors\":\"A. Alexandru, M. Lujan, C. Pelissier, B. Gamari, F. Lee\",\"doi\":\"10.1109/SAAHPC.2011.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lattice QCD calculations were one of the first applications to show the potential of GPUs in the area of high performance computing. Our interest is to find ways to effectively use GPUs for lattice calculations using the overlap operator. The large memory footprint of these codes requires the use of multiple GPUs in parallel. In this paper we show the methods we used to implement this operator efficiently. We run our codes both on a GPU cluster and a CPU cluster with similar interconnects. We find that to match performance the CPU cluster requires 20-30 times more CPU cores than GPUs.\",\"PeriodicalId\":331604,\"journal\":{\"name\":\"2011 Symposium on Application Accelerators in High-Performance Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Symposium on Application Accelerators in High-Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAAHPC.2011.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Symposium on Application Accelerators in High-Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAAHPC.2011.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

晶格QCD计算是显示gpu在高性能计算领域潜力的首批应用之一。我们的兴趣是找到使用重叠运算符有效地使用gpu进行晶格计算的方法。这些代码的大内存占用要求并行使用多个gpu。本文给出了有效实现该算子的方法。我们在GPU集群和具有相似互连的CPU集群上运行代码。我们发现,为了匹配性能,CPU集群需要比gpu多20-30倍的CPU内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Implementation of the Overlap Operator on Multi-GPUs
Lattice QCD calculations were one of the first applications to show the potential of GPUs in the area of high performance computing. Our interest is to find ways to effectively use GPUs for lattice calculations using the overlap operator. The large memory footprint of these codes requires the use of multiple GPUs in parallel. In this paper we show the methods we used to implement this operator efficiently. We run our codes both on a GPU cluster and a CPU cluster with similar interconnects. We find that to match performance the CPU cluster requires 20-30 times more CPU cores than GPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信