功能宏基因组学中微生物丰度分析与系统发育采用

Jyotsna Talreja Wassan, Haiying Wang, Fiona Browne, Huiru Zheng
{"title":"功能宏基因组学中微生物丰度分析与系统发育采用","authors":"Jyotsna Talreja Wassan, Haiying Wang, Fiona Browne, Huiru Zheng","doi":"10.1109/CIBCB.2017.8058557","DOIUrl":null,"url":null,"abstract":"Metagenomics is an unobtrusive science of studying uncultivated microbes sampled directly from an environment, e.g. soil, ocean, air, human body, or animals, etc. Functional metagenomics particularly deals with linking microbes to environmental derivations, such as classifying the role of human gut microbiome into a diseased or non-diseased state. Ongoing research in this area includes analyzing the structure of microbial communities, and relate it to functional analysis. We present an integrative experimental framework for functional metagenomics, including data driven (abundance count of microbial species) and knowledge driven (phylogenetic tree structure) contexts. Our related experiments, indicate that i) feature selection improves the performance of classifying human microbiome samples, ii) the classification of human microbiome remains a challenging problem while incorporating phylogenetic structures. For example, our best accuracy attained on the Costello body site (CBH) dataset with forehead and external ear as body sites, is 89.13 % with a non-phylogenetic model, and 78.26 % with a phylogenetic model. This forms a potential research direction of further exploration of space for incorporating phylogeny in microbial analysis and hence developing integrative computational models for deriving functional phenotypes, based on metagenomic sequencing data.","PeriodicalId":283115,"journal":{"name":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microbial abundance analysis and phylogenetic adoption in functional metagenomics\",\"authors\":\"Jyotsna Talreja Wassan, Haiying Wang, Fiona Browne, Huiru Zheng\",\"doi\":\"10.1109/CIBCB.2017.8058557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metagenomics is an unobtrusive science of studying uncultivated microbes sampled directly from an environment, e.g. soil, ocean, air, human body, or animals, etc. Functional metagenomics particularly deals with linking microbes to environmental derivations, such as classifying the role of human gut microbiome into a diseased or non-diseased state. Ongoing research in this area includes analyzing the structure of microbial communities, and relate it to functional analysis. We present an integrative experimental framework for functional metagenomics, including data driven (abundance count of microbial species) and knowledge driven (phylogenetic tree structure) contexts. Our related experiments, indicate that i) feature selection improves the performance of classifying human microbiome samples, ii) the classification of human microbiome remains a challenging problem while incorporating phylogenetic structures. For example, our best accuracy attained on the Costello body site (CBH) dataset with forehead and external ear as body sites, is 89.13 % with a non-phylogenetic model, and 78.26 % with a phylogenetic model. This forms a potential research direction of further exploration of space for incorporating phylogeny in microbial analysis and hence developing integrative computational models for deriving functional phenotypes, based on metagenomic sequencing data.\",\"PeriodicalId\":283115,\"journal\":{\"name\":\"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2017.8058557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2017.8058557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

宏基因组学是一门不起眼的科学,研究直接从土壤、海洋、空气、人体或动物等环境中取样的未培养微生物。功能宏基因组学特别涉及将微生物与环境衍生物联系起来,例如将人类肠道微生物组的作用分类为患病或非患病状态。该领域正在进行的研究包括分析微生物群落的结构,并将其与功能分析联系起来。我们提出了一个功能宏基因组学的综合实验框架,包括数据驱动(微生物物种丰度计数)和知识驱动(系统发育树结构)背景。我们的相关实验表明,i)特征选择提高了人类微生物组样本分类的性能,ii)在纳入系统发育结构的情况下,人类微生物组的分类仍然是一个具有挑战性的问题。例如,我们在以前额和外耳为身体部位的Costello身体部位(CBH)数据集上获得的最佳准确率在非系统发育模型下为89.13%,在系统发育模型下为78.26%。这形成了一个潜在的研究方向,即进一步探索将系统发育纳入微生物分析的空间,从而开发基于宏基因组测序数据的综合计算模型来推导功能表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbial abundance analysis and phylogenetic adoption in functional metagenomics
Metagenomics is an unobtrusive science of studying uncultivated microbes sampled directly from an environment, e.g. soil, ocean, air, human body, or animals, etc. Functional metagenomics particularly deals with linking microbes to environmental derivations, such as classifying the role of human gut microbiome into a diseased or non-diseased state. Ongoing research in this area includes analyzing the structure of microbial communities, and relate it to functional analysis. We present an integrative experimental framework for functional metagenomics, including data driven (abundance count of microbial species) and knowledge driven (phylogenetic tree structure) contexts. Our related experiments, indicate that i) feature selection improves the performance of classifying human microbiome samples, ii) the classification of human microbiome remains a challenging problem while incorporating phylogenetic structures. For example, our best accuracy attained on the Costello body site (CBH) dataset with forehead and external ear as body sites, is 89.13 % with a non-phylogenetic model, and 78.26 % with a phylogenetic model. This forms a potential research direction of further exploration of space for incorporating phylogeny in microbial analysis and hence developing integrative computational models for deriving functional phenotypes, based on metagenomic sequencing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信