{"title":"施普林格动机","authors":"J. Eberhardt","doi":"10.1090/proc/15290","DOIUrl":null,"url":null,"abstract":"We show that the motive of a Springer fiber is pure Tate. We then consider a category of equivariant Springer motives on the nilpotent cone and construct an equivalence to the derived category of graded modules over the graded affine Hecke algebra.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Springer motives\",\"authors\":\"J. Eberhardt\",\"doi\":\"10.1090/proc/15290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the motive of a Springer fiber is pure Tate. We then consider a category of equivariant Springer motives on the nilpotent cone and construct an equivalence to the derived category of graded modules over the graded affine Hecke algebra.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that the motive of a Springer fiber is pure Tate. We then consider a category of equivariant Springer motives on the nilpotent cone and construct an equivalence to the derived category of graded modules over the graded affine Hecke algebra.